Equilibrium states of grid functions

Authors:
Nelson G. Markley and Michael E. Paul

Journal:
Trans. Amer. Math. Soc. **274** (1982), 169-191

MSC:
Primary 28D20; Secondary 54H20

MathSciNet review:
670926

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is well known that locally constant functions on symbolic spaces have unique equilibrium states. In this paper we investigate the nature of equilibrium states for a type of continuous function which need not have a finite range. Although most of these functions have a unique equilibrium state, phase transitions or multiple equilibrium states do occur and can be analyzed.

**[1]**M. Fisher,*The theory of condensation and the critical point*, Physics**3**(1967), 255-283.**[2]**Franz Hofbauer,*Examples for the nonuniqueness of the equilibrium state*, Trans. Amer. Math. Soc.**228**(1977), no. 223–241.. MR**0435352**, 10.1090/S0002-9947-1977-0435352-1**[3]**M. Kac,*On the notion of recurrence in discrete stochastic processes*, Bull. Amer. Math. Soc.**53**(1947), 1002–1010. MR**0022323**, 10.1090/S0002-9904-1947-08927-8**[4]**N. Markley and M. Paul,*Equilibrium states supported on periodic orbits*, University of Maryland Technical Report TR 78-50.**[5]**-,*Equilibrium states of grid functions*, University of Maryland Technical Report TR 80-73.**[6]**David Ruelle,*Thermodynamic formalism*, Encyclopedia of Mathematics and its Applications, vol. 5, Addison-Wesley Publishing Co., Reading, Mass., 1978. The mathematical structures of classical equilibrium statistical mechanics; With a foreword by Giovanni Gallavotti and Gian-Carlo Rota. MR**511655****[7]**Richard S. Varga,*Matrix iterative analysis*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR**0158502****[8]**Peter Walters,*Ruelle’s operator theorem and 𝑔-measures*, Trans. Amer. Math. Soc.**214**(1975), 375–387. MR**0412389**, 10.1090/S0002-9947-1975-0412389-8**[9]**Peter Walters,*A variational principle for the pressure of continuous transformations*, Amer. J. Math.**97**(1975), no. 4, 937–971. MR**0390180****[10]**Peter Walters,*Invariant measures and equilibrium states for some mappings which expand distances*, Trans. Amer. Math. Soc.**236**(1978), 121–153. MR**0466493**, 10.1090/S0002-9947-1978-0466493-1

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
28D20,
54H20

Retrieve articles in all journals with MSC: 28D20, 54H20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1982-0670926-6

Article copyright:
© Copyright 1982
American Mathematical Society