The space of positive definite matrices and Gromov's invariant
Author:
Richard P. Savage
Journal:
Trans. Amer. Math. Soc. 274 (1982), 239263
MSC:
Primary 53C35; Secondary 53C20, 57R99
MathSciNet review:
670930
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The space positive definite matrices with is considered as a subset of with isometries given by where the determinant of and is given its invariant Riemannian metric. This space has a collection of simplices which are preserved by the isometries and formed by projecting geometric simplices in to the hypersurface . The main result of this paper is that for each the volume of all top dimensional simplices of this type has a uniform upper bound. This result has applications to Gromov's Invariant as defined in William P. Thurston's notes, The geometry and topology of manifolds. The result implies that the Gromov Invariant of the fundamental class of compact manifolds which are formed as quotients of by discrete subgroups of the isometries is nonzero. This gives the first nontrivial examples of manifolds that have a nontrivial Gromov Invariant but do not have strictly negative curvature or nonvanishing characteristic numbers.
 [1]
Armand
Borel, Compact CliffordKlein forms of symmetric spaces,
Topology 2 (1963), 111–122. MR 0146301
(26 #3823)
 [2]
C. Carathéodory, Ueber den Variabilitatsbereich der Fourierschen Konstanten von Positiven harmonischen Funktionen, Rend. Circ. Mat. Palermo 32 (1911), 193217.
 [3]
Marvin
J. Greenberg, Lectures on algebraic topology, W. A. Benjamin,
Inc., New YorkAmsterdam, 1967. MR 0215295
(35 #6137)
 [4]
Michael
Gromov, Volume and bounded cohomology, Inst. Hautes
Études Sci. Publ. Math. 56 (1982), 5–99
(1983). MR
686042 (84h:53053)
 [5]
Morris
W. Hirsch and William
P. Thurston, Foliated bundles, invariant measures and flat
manifolds, Ann. Math. (2) 101 (1975), 369–390.
MR
0370615 (51 #6842)
 [6]
John
Milnor, On the existence of a connection with curvature zero,
Comment. Math. Helv. 32 (1958), 215–223. MR 0095518
(20 #2020)
 [7]
Dennis
Sullivan, A generalization of Milnor’s inequality concerning
affine foliations and affine manifolds, Comment. Math. Helv.
51 (1976), no. 2, 183–189. MR 0418119
(54 #6163)
 [8]
W. Thurston, The geometry and topology of manifolds, Princeton Univ. Press, Princeton, N. J., 1978.
 [9]
J.
Tits, Free subgroups in linear groups, J. Algebra
20 (1972), 250–270. MR 0286898
(44 #4105)
 [1]
 A. Borel, Compact CliffordKlein forms of symmetric spaces, Topology 2 (1963), 111122. MR 0146301 (26:3823)
 [2]
 C. Carathéodory, Ueber den Variabilitatsbereich der Fourierschen Konstanten von Positiven harmonischen Funktionen, Rend. Circ. Mat. Palermo 32 (1911), 193217.
 [3]
 M. Greenberg, Lectures on algebraic topology, Benjamin, New York, 1967. MR 0215295 (35:6137)
 [4]
 M. Gromov, Volume and bounded cohomology, Inst. Hautes Etudes Sci. Publ. Math. (to appear). MR 686042 (84h:53053)
 [5]
 J. M. Hirsch and W. Thurston, Foliated bundles, invariant measures and flat manifolds, Ann. of Math. (2) 101 (1975), 369390. MR 0370615 (51:6842)
 [6]
 J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1958), 215233. MR 0095518 (20:2020)
 [7]
 D. Sullivan, A generalization of Milnor's inequality concerning affine foliations and affine manifolds, Comment. Math. Helv. 51 (1976), 183189. MR 0418119 (54:6163)
 [8]
 W. Thurston, The geometry and topology of manifolds, Princeton Univ. Press, Princeton, N. J., 1978.
 [9]
 J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250270. MR 0286898 (44:4105)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
53C35,
53C20,
57R99
Retrieve articles in all journals
with MSC:
53C35,
53C20,
57R99
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947198206709308
PII:
S 00029947(1982)06709308
Article copyright:
© Copyright 1982
American Mathematical Society
