Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Krull and global dimensions of semiprime Noetherian PI-rings


Authors: Richard Resco, Lance W. Small and J. T. Stafford
Journal: Trans. Amer. Math. Soc. 274 (1982), 285-295
MSC: Primary 16A33; Secondary 16A38
DOI: https://doi.org/10.1090/S0002-9947-1982-0670932-1
MathSciNet review: 670932
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper it is shown that if $ R$ is a semiprime Noetherian PI-ring of finite global dimension, then the Krull dimension of $ R$ is less than or equal to its global dimension. The proof depends upon two preliminary results on arbitrary Noetherian PI-rings, which are of independent interest: (i) any height two prime ideal of $ R$ contains infinitely many height one prime ideals; (ii) the localization of the polynomial ring $ R[x]$ at its set of monic elements is a Jacobson ring.


References [Enhancements On Off] (What's this?)

  • [1] S. A. Amitsur and L. W. Small, Prime ideals in PI-rings, J. Algebra 62 (1980), 358-383. MR 563234 (81c:16027)
  • [2] H. Bass, Algebraic $ K$-theory, Benjamin, New York and Amsterdam, 1968. MR 0249491 (40:2736)
  • [3] J. W. Brewer and W. J. Heinzer, $ R$ Noetherian implies $ R\left\langle X \right\rangle $ is a Hilbert ring, J. Algebra 67 (1980), 204-209. MR 595028 (82d:13010)
  • [4] J. Dixmier, Enveloping algebras, North-Holland, Amsterdam and New York, 1977. MR 0498740 (58:16803b)
  • [5] K. Fields, Examples of orders over discrete valuation rings, Math. Z. 111 (1969), 126-130. MR 0246913 (40:182)
  • [6] -, On the global dimension of skew polynomial rings--an addendum, J. Algebra 14 (1970), 528-530. MR 0265410 (42:320)
  • [7] K. R. Goodearl, Global dimension of differential operator rings, Proc. Amer. Math. Soc. 45 (1974), 315-322. MR 0382358 (52:3243)
  • [8] R. Gordon and J. C. Robson, Krull dimension, Mem. Amer. Math. Soc., no. 133 (1973). MR 0352177 (50:4664)
  • [9] A. Häberlein, Globale Dimensionen von Ore-Erweiterungen, Zulassungsarbeit, Universität München, 1976.
  • [10] A. V. Jategaonkar, A counter-example in ring theory and homological algebra, J. Algebra 12 (1969), 418-440. MR 0240131 (39:1485)
  • [11] -, Skew polynomial rings over orders in artinian rings, J. Algebra 21 (1972), 51-59. MR 0299624 (45:8672)
  • [12] S. Jøndrup, Homological dimensions of some P.I. rings, Comm. Algebra 8 (1980), 685-696. MR 561548 (82f:16013)
  • [13] I. Kaplansky, Commutative rings, rev. ed., Univ. of Chicago Press, Chicago, 1974. MR 0345945 (49:10674)
  • [14] T. Y. Lam, Serre's conjecture, Lecture Notes in Math., vol. 635, Springer-Verlag, Berlin and New York, 1978. MR 0485842 (58:5644)
  • [15] L. R. Le Riche, The ring $ R\left\langle X \right\rangle $, J. Algebra 67 (1980), 327-341. MR 602067 (82d:13011)
  • [16] D. S. Passman, The algebraic structure of group rings, Wiley, New York and London, 1977. MR 470211 (81d:16001)
  • [17] J. C. Robson, Idealizers and hereditary noetherian prime rings, J. Algebra 22 (1972), 45-81. MR 0299639 (45:8687)
  • [18] J. C. Robson and L. W. Small, Liberal extensions, Proc. London Math. Soc. (3) 42 (1981), 87-103. MR 602124 (82c:16025)
  • [19] J.-E. Roos, The Weyl algebras are Gorenstein rings, 1972 (unpublished).
  • [20] A. Rosenberg and J. T. Stafford, Global dimension of Ore extensions, Algebra, Topology, and Category Theory (M. Tierney, ed.), Academic Press, New York, 1976, pp. 181-188. MR 0409564 (53:13318)
  • [21] J. J. Rotman, An introduction to homological algebra, Academic Press, New York, 1980. MR 538169 (80k:18001)
  • [22] L. H. Rowen, Polynomial identities in ring theory, Academic Press, New York, 1980. MR 576061 (82a:16021)
  • [23] W. Schelter, Non-commutative affine P.I. rings are catenary, J. Algebra 51 (1978), 12-18. MR 0485980 (58:5772)
  • [24] L. W. Small, A change of rings theorem, Proc. Amer. Math. Soc. 19 (1968), 662-666. MR 0223412 (36:6460)
  • [25] -, Localization in PI-rings, J. Algebra 18 (1971), 269-270. MR 0280545 (43:6265)
  • [26] B. Stenström, Rings of quotients, Springer-Verlag, Berlin and New York, 1975. MR 0389953 (52:10782)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16A33, 16A38

Retrieve articles in all journals with MSC: 16A33, 16A38


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0670932-1
Keywords: Noetherian PI-rings, Krull dimension, global dimension, Jacobson rings
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society