Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Free boundary convergence in the homogenization of the one-phase Stefan problem

Author: José-Francisco Rodrigues
Journal: Trans. Amer. Math. Soc. 274 (1982), 297-305
MSC: Primary 35R35; Secondary 35K05
MathSciNet review: 670933
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the one phase Stefan problem in a "granular" medium, i.e., with nonconstant thermal diffusity, and we study the asymptotic behaviour of the free boundary with respect to homogenization. We prove the convergence of the coincidence set in measure and in the Hausdorff metric. We apply this result to the free boundary and we obtain the convergence in mean for the star-shaped case and the uniform convergence for the one-dimensional case, respectively. This gives an answer to a problem posed by J. L. Lions in [L].

References [Enhancements On Off] (What's this?)

  • [B] Gerald A. Beer, The Hausdorff metric and convergence in measure, Michigan Math. J. 21 (1974), 63–64. MR 0367161
  • [BLP] Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou, Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications, vol. 5, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503330
  • [C] Luis A. Caffarelli, The regularity of free boundaries in higher dimensions, Acta Math. 139 (1977), no. 3-4, 155–184. MR 0454350
  • [CF] Luis A. Caffarelli and Avner Friedman, Continuity of the temperature in the Stefan problem, Indiana Univ. Math. J. 28 (1979), no. 1, 53–70. MR 523623, 10.1512/iumj.1979.28.28004
  • [CT] Pierre Charrier and Giovanni Maria Troianiello, Un résultat d’existence et de régularité pour les solutions fortes d’un problème unilatéral d’évolution avec obstacle dépendant du temps, C. R. Acad. Sci. Paris Sér. A-B 281 (1975), no. 15, Aii, A621–A623 (French, with English summary). MR 0382826
  • [Ch] F. Chiarenza, Principio di massimo forte per sottosoluzionni di equazioni paraboliche di tipo variazionale, Matematiche (Catania) 32 (1978), 32-43.
  • [CR] Marco Codegone and José-Francisco Rodrigues, Convergence of the coincidence set in the homogenization of the obstacle problem, Ann. Fac. Sci. Toulouse Math. (5) 3 (1981), no. 3-4, 275–285 (1982) (English, with French summary). MR 658736
  • [De] Claude Dellacherie, Ensembles analytiques, capacités, mesures de Hausdorff, Lecture Notes in Mathematics, Vol. 295, Springer-Verlag, Berlin-New York, 1972 (French). MR 0492152
  • [D] Georges Duvaut, Résolution d’un problème de Stefan (fusion d’un bloc de glace à zéro degré), C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A1461–A1463 (French). MR 0328346
  • [FK] Avner Friedman and David Kinderlehrer, A one phase Stefan problem, Indiana Univ. Math. J. 24 (1974/75), no. 11, 1005–1035. MR 0385326
  • [KN] David Kinderlehrer and Louis Nirenberg, The smoothness of the free boundary in the one phase Stefan problem, Comm. Pure Appl. Math. 31 (1978), no. 3, 257–282. MR 480348, 10.1002/cpa.3160310302
  • [KS] David Kinderlehrer and Guido Stampacchia, An introduction to variational inequalities and their applications, Pure and Applied Mathematics, vol. 88, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 567696
  • [LSU] G. A. Ladyženskaya, V. A. Solonnikov, and N. N. Uralceva, Linear and quasi-linear equations of parabolic type, Transl. Math. Monos., vol. 23, Amer. Math. Soc., Providence, R. I., 1968.
  • [L] J.-L. Lions, Asymptotic behaviour of solutions of variational inequalities with highly oscillating coefficients, Applications of methods of functional analysis to problems in mechanics (Joint Sympos., IUTAM/IMU, Marseille, 1975) Springer, Berlin, 1976, pp. 30–55. Lecture Notes in Math., 503. MR 0600341
  • [M1] F. Murat, Sur l'homogéneisation d'inéquations elliptiques du $ 2$ème ordre relatives au convexe $ k({\Psi _1},{\Psi _2})$, Thèse d'Etat, Université Paris VI, 1976.
  • [M2] -, Oral communication, Paris, June 1980.
  • [R] José-Francisco Rodrigues, Sur le comportement asymptotique de la solution et de la frontière libre d’une inéquation variationnelle parabolique, Ann. Fac. Sci. Toulouse Math. (5) 4 (1982), no. 3-4, 263–279 (1983) (French, with English summary). MR 701732

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35R35, 35K05

Retrieve articles in all journals with MSC: 35R35, 35K05

Additional Information

Keywords: Free boundary problems, Parabolic variational inequalities, homogenization, Stefan problem
Article copyright: © Copyright 1982 American Mathematical Society