Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Injectivity in Banach spaces and the Mazur-Ulam theorem on isometries


Author: Julian Gevirtz
Journal: Trans. Amer. Math. Soc. 274 (1982), 307-318
MSC: Primary 46B20
DOI: https://doi.org/10.1090/S0002-9947-1982-0670934-5
MathSciNet review: 670934
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A mapping $ f$ of an open subset $ U$ of a Banach space $ X$ into another Banach space $ Y$ is said to be $ (m,M)$-isometric if it is a local homeomorphism for which $ M \geqslant {D^ + }f(x)$ and $ m \leqslant {D^ - }f(x)$ for all $ x \in U$, where $ {D^ + }f(x)$ and $ {D^ - }f(x)$ are, respectively, the upper and lower limits of $ \vert f(y) - f(x)\vert/\vert y - x\vert\;{\text{as}}\;y \to x$. For $ 0 < \rho \leqslant 1$ we find a number $ \mu (\rho ) > 1$ which has the following property: Let $ X$ and $ Y$ be Banach spaces and let $ U$ be an open convex subset of $ X$ containing a ball of radius $ r$ and contained in the concentric ball of radius $ R$. Then all $ (m,M)$-isometric mappings of $ U$ into $ Y$ are injective if $ M/m < \mu (r/R)$. We also derive similar injectivity criteria for a more general class of connected open sets $ U$. The basic tool used is an approximate version of the Mazur-Ulam theorem on the linearity of distance preserving transformations between normed linear spaces.


References [Enhancements On Off] (What's this?)

  • [1] S. Banach, Théorie des opérations linéaires, PWN, Warsaw, 1932.
  • [2] F. W. Gehring and B. G. Osgood, Uniform domains and the quasi-hyperbolic metric, J. Analyse Math. 36 (1979), 50-74. MR 581801 (81k:30023)
  • [3] J. Gevirtz, Injectivity of quasi-isometric mappings of balls, Proc. Amer. Math. Soc. 85 (1982), 345-349. MR 656099 (84h:47072)
  • [4] F. John, Quasi-isometric mappings in Hilbert space, New York Univ., Courant Inst. Math. Sci., Res. Rep. No. IMM-NYU 336, 1965. MR 0190905 (32:8315)
  • [5] -, On quasi-isometric mappings. I, Comm. Pure Appl. Math. 21 (1968), 77-110. MR 0222666 (36:5716)
  • [6] -, On quasi-isometric mappings. II, Comm. Pure Appl. Math. 22 (1969), 265-278. MR 0244741 (39:6055)
  • [7] -, Distance changes in deformations with small strain, (Studies and essays presented to Yu-Why Chen), Math. Research Center, National Taiwan Univ., Taipei, 1970, pp. 1-15. MR 0276426 (43:2173)
  • [8] O. Marito and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. AI Math. 4 (1978/1979), 383-401. MR 565886 (81i:30039)
  • [9] S. Mazur and S. Ulam, Sur les transformations isométriques d'espaces vectoriels normé, C. R. Acad. Sci. Paris Sér. 194 (1932), 946-948.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46B20

Retrieve articles in all journals with MSC: 46B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0670934-5
Keywords: Quasi-isometric mapping, injectivity, uniform domain
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society