Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Ampleness and connectedness in complex $ G/P$


Author: Norman Goldstein
Journal: Trans. Amer. Math. Soc. 274 (1982), 361-373
MSC: Primary 32M10; Secondary 14M17
DOI: https://doi.org/10.1090/S0002-9947-1982-0670938-2
MathSciNet review: 670938
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper determines the "ampleness" of the tangent bundle of the complex homogeneous space, $ G/P$, by calculating the maximal fibre dimension of the desingularization of a nilpotent subvariety of the Lie algebra of $ G$.


References [Enhancements On Off] (What's this?)

  • [1] P. Bala and R. W. Carter, Classes of unipotent elements in simple algebraic groups, Math. Proc. Cambridge Philos. Soc. 79 (1976), 401-425 ; 80 (1976), 1-18. MR 0417306 (54:5363a)
  • [2] I. N. Bernstein, I. M. Gel'fand and S. I. Gel'fand, Schubert cells and cohomology of the spaces $ G/P$, Russian Math. Surveys 28 (1973), 1-26.
  • [3] A. Borel, Linear algebraic groups, Algebraic Groups and Discontinuous Groups (Boulder, Colorado, 1965), Proc. Sympos. Pure Math., vol. 10, Amer. Math. Soc., Providence, R.I., 1966, pp. 3-19. MR 0204532 (34:4371)
  • [4] -, Linear algebraic groups, Benjamin, New York, 1969. MR 0251042 (40:4273)
  • [5] A. Borel et al., Seminar on algebraic groups and related finite groups, Lecture Notes in Math., vol. 131, Springer-Verlag, Berlin and New York, 1970. MR 0258838 (41:3484)
  • [5A] W. Borho and H. Kraft, Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen, Comment. Math. Helv. 54 (1979), 61-104. MR 522032 (82m:14027)
  • [6] W. C. Carter, Simple groups of Lie type, Pure and Appl. Math., vol. 28, Wiley, New York, 1972. MR 0407163 (53:10946)
  • [7] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sb. (N.S.) 30 (1952), 349-462; English transl. in Amer. Math. Soc. Transl. (2) 6 (1957), 111-245. MR 0047629 (13:904c)
  • [8] R. Elkik, Désingularisation des adhérences d'orbites polarisables et des nappes dans les algèbres de Lie réductives, preprint.
  • [9] G. B. Elkington, Centralizers of unipotent elements in semisimple algebraic groups, J. Algebra 23 (1972), 137-163. MR 0308228 (46:7342)
  • [10] G. Faltings, Formale Geometrie und homogene Räume, Invent. Math. 64 (1981), 123-165. MR 621773 (82m:14006)
  • [10A] -, letter, June 1981.
  • [11] W. E. Fulton and J. Hansen, A connectedness theorem for projective varieties with applications to intersection and singularities of mappings, Ann. of Math. (2) 110 (1979), 159-166. MR 541334 (82i:14010)
  • [12] W. E. Fulton and R. Lazarsfeld, Connectivity and its applications in algebraic geometry, Proceedings, University of Illinois at Chicago Circle, 1980; Lecture Notes in Math., vol. 862, Springer-Verlag, Berlin and New York, 1981, pp. 26-93. MR 644817 (83i:14002)
  • [13] M. Gerstenhaber, Dominance over the classical groups, Ann. of Math. (2) 74 (1961), 532-569. MR 0136683 (25:148)
  • [14] N. Goldstein, Ampleness in complex homogeneous spaces and a Second Lefschetz Theorem, preprint. MR 699913 (84i:32044)
  • [15] J. Hansen, A connectedness theorem for flagmanifolds and Grassmannians, Aarhus Universitet Preprint Series, No. 9, 1980/81. MR 704218 (85d:14071)
  • [16] J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Math., no. 9, Springer-Verlag, Berlin and New York, 1972. MR 0323842 (48:2197)
  • [16A] S. Kleiman, The transversality of a general translate, Composito Math. 28 (1974), 287-297. MR 0360616 (50:13063)
  • [17] K. Mizuno, The conjugate classes of unipotent elements of the Chevalley groups $ {E_7}$ and $ {E_8}$, Tokyo J. Math. 3 (1980), 391-459. MR 605099 (82m:20046)
  • [18] H. Samelson, Notes on Lie algebras, Math. Studies, no. 23, Van Nostrand Reinhold, Princeton, N.J., 1969. MR 0254112 (40:7322)
  • [19] J. P. Serre, Algèbres de Lie semi-simples complex, Benjamin, New York, 1966. MR 0215886 (35:6721)
  • [20] A. Sommese, Submanifolds of Abelian varieties, Math. Ann. 233 (1978), 229-256. MR 0466647 (57:6524)
  • [21] -, Complex subspaces of homogeneous complex manifolds. I, Duke Math. J. 46 (1979), 527-548. MR 544244 (81h:32034)
  • [21A] -, Complex subspaces of homogeneous complex manifolds. II, Nagoya Math. J. (to appear).
  • [21B] -, Concavity theorems, Math. Ann. 235 (1978), 37-53. MR 0486637 (58:6352)
  • [21C] -, Concavity theorems. II, preprint.
  • [22] T. A. Springer, The unipotent variety of a semisimple group, Algebraic Geometry (Bombay Colloquium, 1968), Tata Institute, Bombay, 1969, pp. 373-391. MR 0263830 (41:8429)
  • [23] R. Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Étude Sci. Publ. Math. 25 (1965), 49-80. MR 0180554 (31:4788)
  • [24] -, Conjugacy classes in algebraic groups (notes by V. Deodhar), Lecture Notes in Math., vol. 366, Springer-Verlag, Berlin and New York, 1974. MR 0352279 (50:4766)
  • [25] -, On the desingularization of the unipotent variety, Invent. Math. 36 (1976), 209-224. MR 0430094 (55:3101)
  • [26] -, letter, March 1981.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32M10, 14M17

Retrieve articles in all journals with MSC: 32M10, 14M17


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0670938-2
Keywords: Ampleness of tangent bundle, Lefschetz and connectedness theorems, desingularization of unipotent variety, length function of Weyl group
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society