Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Ampleness and connectedness in complex $ G/P$


Author: Norman Goldstein
Journal: Trans. Amer. Math. Soc. 274 (1982), 361-373
MSC: Primary 32M10; Secondary 14M17
MathSciNet review: 670938
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper determines the "ampleness" of the tangent bundle of the complex homogeneous space, $ G/P$, by calculating the maximal fibre dimension of the desingularization of a nilpotent subvariety of the Lie algebra of $ G$.


References [Enhancements On Off] (What's this?)

  • [1] P. Bala and R. W. Carter, Classes of unipotent elements in simple algebraic groups. I, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 3, 401–425. MR 0417306
  • [2] I. N. Bernstein, I. M. Gel'fand and S. I. Gel'fand, Schubert cells and cohomology of the spaces $ G/P$, Russian Math. Surveys 28 (1973), 1-26.
  • [3] Armand Borel, Linear algebraic groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 3–19. MR 0204532
  • [4] Armand Borel, Linear algebraic groups, Notes taken by Hyman Bass, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0251042
  • [5] Armand Borel, Properties and linear representations of Chevalley groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 1–55. MR 0258838
  • [5A] Walter Borho and Hanspeter Kraft, Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen, Comment. Math. Helv. 54 (1979), no. 1, 61–104 (German, with English summary). MR 522032, 10.1007/BF02566256
  • [6] Roger W. Carter, Simple groups of Lie type, John Wiley & Sons, London-New York-Sydney, 1972. Pure and Applied Mathematics, Vol. 28. MR 0407163
  • [7] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30(72) (1952), 349–462 (3 plates) (Russian). MR 0047629
  • [8] R. Elkik, Désingularisation des adhérences d'orbites polarisables et des nappes dans les algèbres de Lie réductives, preprint.
  • [9] Gordon Bradley Elkington, Centralizers of unipotent elements in semisimple algebraic groups, J. Algebra 23 (1972), 137–163. MR 0308228
  • [10] Gerd Faltings, Formale Geometrie und homogene Räume, Invent. Math. 64 (1981), no. 1, 123–165 (German). MR 621773, 10.1007/BF01393937
  • [10A] -, letter, June 1981.
  • [11] William Fulton and Johan Hansen, A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings, Ann. of Math. (2) 110 (1979), no. 1, 159–166. MR 541334, 10.2307/1971249
  • [12] William Fulton and Robert Lazarsfeld, Connectivity and its applications in algebraic geometry, Algebraic geometry (Chicago, Ill., 1980) Lecture Notes in Math., vol. 862, Springer, Berlin-New York, 1981, pp. 26–92. MR 644817
  • [13] Murray Gerstenhaber, Dominance over the classical groups, Ann. of Math. (2) 74 (1961), 532–569. MR 0136683
  • [14] Norman Goldstein, Ampleness in complex homogeneous spaces and a second Lefschetz theorem, Pacific J. Math. 106 (1983), no. 2, 271–291. MR 699913
  • [15] Johan Hansen, A connectedness theorem for flagmanifolds and Grassmannians, Amer. J. Math. 105 (1983), no. 3, 633–639. MR 704218, 10.2307/2374317
  • [16] James E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York-Berlin, 1972. Graduate Texts in Mathematics, Vol. 9. MR 0323842
  • [16A] Steven L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–297. MR 0360616
  • [17] Kenzo Mizuno, The conjugate classes of unipotent elements of the Chevalley groups 𝐸₇ and 𝐸₈, Tokyo J. Math. 3 (1980), no. 2, 391–461. MR 605099, 10.3836/tjm/1270473003
  • [18] Hans Samelson, Notes on Lie algebras, Van Nostrand Reinhold Mathematical Studies, No. 23, Van Nostrand Reinhold Co., New York- London-Melbourne, 1969. MR 0254112
  • [19] Jean-Pierre Serre, Algèbres de Lie semi-simples complexes, W. A. Benjamin, inc., New York-Amsterdam, 1966 (French). MR 0215886
  • [20] Andrew John Sommese, Submanifolds of Abelian varieties, Math. Ann. 233 (1978), no. 3, 229–256. MR 0466647
  • [21] Andrew John Sommese, Complex subspaces of homogeneous complex manifolds. I. Transplanting theorems, Duke Math. J. 46 (1979), no. 3, 527–548. MR 544244
  • [21A] -, Complex subspaces of homogeneous complex manifolds. II, Nagoya Math. J. (to appear).
  • [21B] Andrew John Sommese, Concavity theorems, Math. Ann. 235 (1978), no. 1, 37–53. MR 0486637
  • [21C] -, Concavity theorems. II, preprint.
  • [22] T. A. Springer, The unipotent variety of a semi-simple group, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, pp. 373–391. MR 0263830
  • [23] Robert Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49–80. MR 0180554
  • [24] Robert Steinberg, Conjugacy classes in algebraic groups, Lecture Notes in Mathematics, Vol. 366, Springer-Verlag, Berlin-New York, 1974. Notes by Vinay V. Deodhar. MR 0352279
  • [25] Robert Steinberg, On the desingularization of the unipotent variety, Invent. Math. 36 (1976), 209–224. MR 0430094
  • [26] -, letter, March 1981.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32M10, 14M17

Retrieve articles in all journals with MSC: 32M10, 14M17


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0670938-2
Keywords: Ampleness of tangent bundle, Lefschetz and connectedness theorems, desingularization of unipotent variety, length function of Weyl group
Article copyright: © Copyright 1982 American Mathematical Society