Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the variety of invariant subspaces of a finite-dimensional linear operator


Author: Mark A. Shayman
Journal: Trans. Amer. Math. Soc. 274 (1982), 721-747
MSC: Primary 15A04; Secondary 14M15
DOI: https://doi.org/10.1090/S0002-9947-1982-0675077-2
MathSciNet review: 675077
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ V$ is a finite-dimensional vector space over $ \mathbf{R}$ or $ \mathbf{C}$ and $ A \in {\operatorname {Hom}}(V)$, the set $ {S_A}(k)$ of $ k$-dimensional $ A$-invariant subspaces is a compact subvariety of the Grassmann manifold $ {G^k}(V)$, but it need not be a Schubert variety. We study the topology of $ {S_A}(k)$. We reduce to the case where $ A$ is nilpotent. In this case we prove that $ {S_A}(k)$ is connected but need not be a manifold. However, the subset of $ {S_A}(k)$ consisting of those subspaces with a fixed cyclic structure is a regular submanifold of $ {G^k}(V)$.


References [Enhancements On Off] (What's this?)

  • [1] W. M. Boothby, An introduction to differentiable manifolds and Riemannian geometry, Academic Press, New York, 1975. MR 0426007 (54:13956)
  • [2] T. Brylawski, The lattice of integer partitions, Discrete Math. 6 (1973), 201-219. MR 0325405 (48:3752)
  • [3] F. R. Gantmacher, The theory of matrices, Vol. I, Chelsea, New York, 1959.
  • [4] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New York, 1978. MR 507725 (80b:14001)
  • [5] J. E. Humphreys, Linear algebraic groups, Springer-Verlag, New York, 1975. MR 0396773 (53:633)
  • [6] S. L. Kleiman, Problem 15, rigorous foundations of Schubert's enumerative calculus, Proc. Sympos. Pure Math., vol. 28, Math. Developments Arising from Hilbert Problems, Amer. Math. Soc., Providence, R. I., 1976. MR 0429938 (55:2946)
  • [7] M. A. Shayman, Varieties of invariant subspaces and the algebraic Riccati equation, Ph. D. thesis, Harvard University, 1980.
  • [8] J. C. Willems, Least squares stationary optimal control and the algebraic Riccati equation, IEEE Trans. Automat. Control 16 (1971), 621-634. MR 0308890 (46:8002)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 15A04, 14M15

Retrieve articles in all journals with MSC: 15A04, 14M15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0675077-2
Keywords: Invariant subspace, Grassmann manifold, Schubert variety
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society