Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

An elementary integral solution operator for the Cauchy-Riemann equations on pseudoconvex domains in $ {\bf C}\sp{n}$


Author: R. Michael Range
Journal: Trans. Amer. Math. Soc. 274 (1982), 809-816
MSC: Primary 32F20; Secondary 35N15
DOI: https://doi.org/10.1090/S0002-9947-1982-0675081-4
MathSciNet review: 675081
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An integral representation formula for $ (0,q)$ forms is constructed on a strictly pseudoconvex domain $ D$ in $ \mathbf{C}^n$ by using only the local geometry of the boundary of $ D$. By combining this representation with elementary results about compact operators in Banach spaces, one obtains the solution of the Levi problem and, more importantly, an integral solution operator for $ \bar{\partial}$ on $ D$. The construction does not need any a priori knowledge of the solvability of $ \bar{\partial}$ and thus allows us to establish fundamental global results by a direct and elementary method.


References [Enhancements On Off] (What's this?)

  • [1] J. E. Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), 529-569. MR 0422683 (54:10669)
  • [2] H. Grauert, On Levi's problem and the embedding of real-analytic manifolds, Ann. of Math. (2) 68 (1958), 460-472. MR 0098847 (20:5299)
  • [3] R. Harvey and J. Polking, Fundamental solutions in complex analysis. I: The Cauchy-Riemann operator, Duke Math. J. 46 (1979), 253-300. MR 534054 (81c:32042a)
  • [4] H. Hefer, Zur Funktionentheorie mehrerer Veränderlichen. Über eine Zerlegung analytischer Funktionen und die Weil'sche Integraldarstellung, Math. Ann. 122 (1950), 276-278. MR 0039082 (12:493f)
  • [5] G. M. Henkin, Integral representation of functions in strictly pseudoconvex domains and applications to the $ \bar{\partial}$-problem, Math. USSR-Sb. 11 (1970), 273-281.
  • [6] N. Kerzman and E. M. Stein, The Szegö kernel in terms of Cauchy-Fantappié kernels, Duke Math. J. 45 (1978), 197-224. MR 0508154 (58:22676)
  • [7] W. Koppelman, The Cauchy integral for differential forms, Bull. Amer. Math. Soc. 73 (1967), 554-556., MR 0216027 (35:6862)
  • [8] I. Lieb, Die Cauchy-Riemannschen Differentialgleichungen auf streng pseudokonvexen Gebieten, Math. Ann. 190 (1970), 6-44. MR 0283235 (44:468)
  • [9] K. Oka, Sur les fonctions analytiques de plusieurs variables. I: Domaines convexes par rapport aux fonctions rationelles, J. Sci. Hiroshima Univ. Ser. A 6 (1936), 245-255.
  • [10] R. M. Range and Y. T. Siu, Uniform estimates for the $ \bar{\partial}$-equation on domains with piecewise smooth strictly pseudoconvex boundaries, Math. Ann. 206 (1973), 325-354. MR 0338450 (49:3214)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32F20, 35N15

Retrieve articles in all journals with MSC: 32F20, 35N15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1982-0675081-4
Keywords: Strictly pseudoconvex domains, integral representations, Levi problem, Hefer's lemma, integral solution operator for $ \bar{\partial}$
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society