Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

Mixed Hodge structures


Author: Fouad El Zein
Journal: Trans. Amer. Math. Soc. 275 (1983), 71-106
MSC: Primary 14C30; Secondary 14F40, 18E30, 32J25
MathSciNet review: 678337
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The theory of Mixed Hodge Structures (M.H.S.) on the cohomology of an algebraic variety $ X$ over complex numbers was found by Deligne in 1970.

The case when $ X$ is a Normal Crossing Divisor is fundamental. When the variety $ X$ is embedded in a smooth ambient space we get the Mixed Hodge Structure using standard exact sequences in topology. This technique uses resolution of singularities one time for a complete variety and $ 2$ times for a quasi-projective one.

As applications to the study of local cohomology we give the spectral sequence to the Mixed Hodge Structure on cohomology with support on a subspace $ Y$.


References [Enhancements On Off] (What's this?)

  • [H II] Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 0498551 (58 #16653a)
  • [E] F. Elzein, Complexe dualisant et applications, Bull. Soc. Math. France, Mémoire No. 58, 1978.
  • [G] P. Griffiths and W. Schmid, Recent developments in Hodge theory, Proc. Internat. Colloq. Discrete Subgroups Lie Groups (Bombay), 1973.
  • [V] P. Deligne (Editor), Séminaire de Géométrie Algébrique SGA $ 4\frac{1} {2}$, Lecture Notes in Math., vol. 569, Springer-Verlag, Berlin and New York, 1977 (Catégories dériveé, by J. L. Verdier, p. 262).
  • [VI] Jean-Louis Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math. 36 (1976), 295–312 (French). MR 0481096 (58 #1242)
  • [VII] -, Séminaire Bourbaki 1965/66, Exposé no. 300.
  • [D] Philippe Du Bois, Complexe de de Rham filtré d’une variété singulière, Bull. Soc. Math. France 109 (1981), no. 1, 41–81 (French). MR 613848 (82j:14006)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14C30, 14F40, 18E30, 32J25

Retrieve articles in all journals with MSC: 14C30, 14F40, 18E30, 32J25


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1983-0678337-5
PII: S 0002-9947(1983)0678337-5
Article copyright: © Copyright 1983 American Mathematical Society