DIMENSION OF STRATIFIABLE SPACES

BY

SHINPEI OKA

Abstract. We define a subclass, denoted by EM_3, of the class of stratifiable spaces, and obtain several dimension theoretical results for EM_3 including the coincidence theorem for dim and Ind. The class EM_3 is countably productive, hereditary, preserved under closed maps and, furthermore, the largest subclass of stratifiable spaces in which a harmonious dimension theory can be established.

1. Introduction. Beyond metric spaces, the following line of generalized metric spaces has been established by many authors [S, C, B, H, Ok]:

metric \rightarrow Lašnev1 \rightarrow M_1 \rightarrow stratifiable \rightarrow paracompact σ.

After Katětov and Morita’s work for metric spaces, the first attack to this line in dimension theory was done by Leibo [L1] who proved the equality $\dim X = \mathrm{Ind} X$ for any Lašnev space X. Nagami extended this result by defining L-spaces [N3] and free L-spaces [N4]. Free L-spaces form a countably productive and hereditary class containing every Lašnev space and included in the class of M_1-spaces. It is now desired to develop a satisfactory dimension theory of a still larger class of generalized metric spaces, say, M_1-spaces or stratifiable spaces.

In this direction we define a subclass of stratifiable spaces in terms of a special kind of σ-closure-preserving collection.

Definition 1.1. Let X be a space. A collection \mathcal{S} of subsets of X is called an encircling net (or, for short, E-net) if for any point x and any open neighborhood U of x, there exists a subcollection \mathcal{S}' of \mathcal{S} such that $x \in X - \mathcal{S}' \subseteq U$ and \mathcal{S}' is a closed set of X (where \mathcal{S}' denotes the union of the members of \mathcal{S}).

By EM_3 we denote the class of stratifiable spaces with σ-closure-preserving E-nets, and by M_3 the class of stratifiable spaces.

The class EM_3 is countably productive, hereditary and preserved under closed maps as well as perfect maps (Corollary 3.9).

Our first main result is a characterization of members of EM_3 as those spaces which are the perfect (closed) images of zero-dimensional stratifiable spaces (Theorem 3.8). This means that EM_3 is just the maximal perfect subclass of M_3 in the sense of Nagami [N1].

Received by the editors May 15, 1981 and, in revised form, December 1, 1981.
1980 Mathematics Subject Classification. Primary 54E20, 54F45; Secondary 54E18.
Key words and phrases. Stratifiable space, σ-space, E-net, LE-net, E-quartet, E-map, fiber product.

1 A space is called a Lašnev space if it is the closed image of a metric space.
The second main results appear in Theorems 4.2 and 4.3 and consist of the following theorems for EM_{3}:
(a) the equidimensional G_{6}-envelope theorem,
(b) the dimension raising theorem,\(^2\)
(c) the decomposition theorem,
(d) the coincidence theorem for dim and Ind.
These theorems for EM_{3} extend the corresponding theorems for free L-spaces \([N_{4}]\) as well as those for Lašnev spaces \([L_{1}, L_{2}, O_{1}]\).
It is an open problem whether the inclusion $EM_{3} \subset M_{3}$ is proper. But the characterization above implies that EM_{3} is the largest\(^3\) subclass of M_{3} in which the dimension raising theorem holds. We also see in Corollary 4.5 that EM_{3} is the largest\(^3\) subclass of M_{3} in which the decomposition theorem and the equidimensional G_{6}-envelope theorem simultaneously hold.
Our arguments are based on Gruenhage and Junnila's result that a stratifiable space is an M_{2}-space \([G, J]\). Indeed, though we use the word "stratifiable" in view of its significance, what we need is only the existence of a σ-closure-preserving quasi-base.
Conventions. Throughout this paper a space is a Hausdorff topological space, and a map means an onto continuous one. Let X, Y be spaces and let $f : X \to Y$ be a map. For a collection \mathcal{F} of subsets of X, the symbol \mathcal{F}^{*} denotes the union of all members of \mathcal{F}, and $f(\mathcal{F})$ means the collection of subsets of Y of the form $\{f(F) : F \in \mathcal{F}\}$. For a subset Z of X we denote by \overline{Z} (or $\text{Cl} \ Z$) the closure of Z, by $\text{Int} \ Z$ the interior of Z, and by $\text{Bd} \ Z$ the boundary of Z.

2. Encircling nets and large encircling nets. Encircling nets are naturally strengthened as follows:

Definition 2.1. Let X be a space. A collection \mathcal{S} of subsets of X is called a large encircling net (or, simply, an LE-net) if for any disjoint closed sets C and K of X, there exists a subcollection \mathcal{S}' of \mathcal{S} such that $C \subseteq \mathcal{S}' \subseteq X - K$ and \mathcal{S}' is a closed set of X.

Remarks. Since an LE-net is a net in the usual sense, it follows from Siwiec-Nagata \([SN]\) that a space with a σ-closure-preserving LE-net is a σ-space. But a space with a σ-closure-preserving E-net is not necessarily a σ-space as will be seen in Example 2.8. On the other hand it is trivial that a regular σ-space X with $\text{ind} \ X = 0$ admits a σ-closure-preserving E-net, and that a normal σ-space X with $\text{dim} \ X \leqslant 0$ admits a σ-closure-preserving LE-net.

Proposition 2.2. A metric space admits a σ-locally finite LE-net.

Proof. Let M be a metric spaces and \(\{\mathcal{S}_{i} : i = 1, 2, \ldots\}\) a sequence of locally finite closed covers of M such that, for each i, the diameter of each member of \mathcal{S}_{i} is smaller than $1/i$. Let C, K be disjoint closed sets of M and put
\[
\mathcal{F}_{i} = \{ E \in \mathcal{S}_{i} : E \cap C \neq \emptyset \text{ and } E \cap K = \emptyset \}.
\]
\(^2\) The dimension raising theorem for a topological class \mathcal{C} is: If $X \in \mathcal{C}$ and $\text{dim} \ X \leqslant n$, then X is the image of a space $X_0 \in \mathcal{C}$ with $\text{dim} \ X_0 \leqslant 0$ under a perfect map of order not greater than $n + 1$.
\(^3\) When using this word we take no account of infinite-dimensional spaces in the sense of dim. License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
It is then clear that $\bigcup_{i=1}^{\infty} \mathcal{S}_i^*$ is a closed set of X including C but not meeting K. Hence $\bigcup_{i=1}^{\infty} \mathcal{S}_i$ is a σ-locally finite LE-net on M, which completes the proof.

Proposition 2.3. The property of having a σ-closure-preserving LE-net is preserved under closed maps.

We thus have

Proposition 2.4. A Lašnev space admits a σ-closure-preserving LE-net, and hence it is a member of EM_3.

Lemma 2.5. If \mathcal{S} is an E-net (resp. LE-net) on a space, then $\{ \mathcal{E}: E \in \mathcal{S} \}$ is an E-net (resp. LE-net) on the space.

Proposition 2.6. The property of having a σ-closure-preserving E-net is countably productive, hereditary and preserved under perfect maps.

Proof. Let $X_i, i = 1, 2, \ldots, $ be spaces with σ-closure-preserving E-nets \mathcal{S}_i. It is then clear that

$$\left\{ E_j \times \prod_{i=1, i \neq j}^{\infty} X_i: E_j \in \mathcal{S}_j, j = 1, 2, \ldots \right\}$$

is a σ-closure-preserving E-net on $\prod_{i=1}^{\infty} X_i$.

By the preceding lemma it is obvious that the property is hereditary.

Let X be a space with a σ-closure-preserving E-net \mathcal{S} and let $f: X \to Y$ be a perfect map onto a space Y. By Lemma 2.5 we may assume that every finite intersection of members of \mathcal{S} is again a member of \mathcal{S}. To show that $f(\mathcal{S})$ is an E-net on Y let $y \in Y$ and let U be an open neighborhood of y. There exist subcollections $\mathcal{S}_i, 1 \leq i \leq k,$ of \mathcal{S} such that $f^{-1}(y) \cap X - \bigcup_{i=1}^{k} \mathcal{S}_i^* \subset f^{-1}(U)$ and \mathcal{S}_i^* is a closed set of X. It then follows from assumption that $f(\bigcap_{i=1}^{k} \mathcal{S}_i^*)$ is a closed set of Y written as a union of members of $f(\mathcal{S})$ such that $y \in Y - f(\bigcap_{i=1}^{k} \mathcal{S}_i^*) \subset U$. This completes the proof.

Proposition 2.7. Let X be a space (resp. a semistratifiable space). Then the following statements are equivalent:

1. X admits a σ-closure-preserving LE-net (resp. E-net).
2. X admits a σ-locally finite LE-net (resp. E-net).
3. X admits a σ-discrete LE-net (resp. E-net).

Proof. It follows from Lemma 2.5 and a remark above that a space with a σ-closure-preserving LE-net admits a σ-closure-preserving net of closed sets, and therefore it is semistratifiable. Hence the proposition is immediate from Lemma 2.5 and the following fact, which is essentially due to Siwiec and Nagata [SN]: Let X be a semistratifiable space and \mathcal{S} a σ-closure-preserving collection of closed sets of X. Then there exists a σ-discrete collection \mathcal{F} of closed sets of X such that each member of \mathcal{S} is a union of members of \mathcal{F}.

As for famous pathological spaces, we have the following results which imply particularly that the existence of σ-closure-preserving E-nets does not mean, in general, that of σ-closure-preserving LE-nets (but, for stratifiable spaces, the former means the latter as will be seen in Theorem 3.8).
Examples 2.8. (1) The Michael line \(I(M) \) has a \(\sigma \)-discrete \(E \)-net, but does not have a \(\sigma \)-closure-preserving \(LE \)-net.

(2) The same is true for the Sorgenfrey line \(R(S) \).

(3) \([0, \omega_1]\) does not admit a \(\sigma \)-closure-preserving \(E \)-net.

(4) The quotient space \(I(M)/Q \) obtained by identifying the rational points in \(I(M) \) does not admit a \(\sigma \)-closure-preserving \(E \)-net. In particular the property of having a \(\sigma \)-closure-preserving \(E \)-net is not preserved under closed maps.

Proof. (1) and (2) (simultaneously). Let \(\mathcal{F} \) be a \(\sigma \)-discrete net of closed sets in the unit interval \(I \) (resp. the real line \(R \)) with the usual topology. It is easy to see that \(\mathcal{F} \) is a \(\sigma \)-discrete \(E \)-net on \(I(M) \) (resp. \(R(S) \)). But \(I(M) \) (resp. \(R(S) \)) does not admit a \(\sigma \)-closure-preserving \(LE \)-net because it is not a \(\sigma \)-space.

(3) For any \(\sigma \)-closure-preserving collection \(\mathcal{F} \) of \([0, \omega_1]\), \(\mathcal{F} \) fails to be an \(E \)-net at \(\omega_1 \); indeed, \(\text{Cl}(\{F: F \in \mathcal{F}, \omega_1 \notin F\}) \cap \{\omega_1\} = \emptyset \).

(4) If \(I(M)/Q \) had a \(\sigma \)-closure-preserving \(E \)-net, then every point in \(I(M)/Q \), in particular the quotient image of \(Q \), would be a \(G_\delta \)-set of \(I(M)/Q \); but this is impossible because \(Q \) is not a \(G_\delta \)-set of \(I(M) \).

3. Characterizations of \(EM_3 \).

Lemma 3.1 [O2, Lemma 3.1]. Let \(X \) be a submetrizable space (that is, \(X \) admits a weaker metric topology), and let \(\mathcal{U} \) be a \(\sigma \)-discrete collection of cozero sets of \(X \). Then there exist a metric space \(M \) and a one-to-one map \(f: X \to M \) such that \(f(U) \) is an open set of \(M \) for every \(U \in \mathcal{U} \).

The following lemma plays a fundamental role in this paper.

Lemma 3.2. Let \(X \) be a paracompact \(\sigma \)-space and let \(\mathcal{F} = \bigcup_{i=1}^{\infty} \mathcal{F}_i \) be a collection of closed sets of \(X \) such that \(\mathcal{F}_i \) is closure-preserving for each \(i \). Then there exist a metric space \(M \) and a one-to-one map \(f: X \to M \) such that \(f(F) \) is a closed set of \(M \) for every \(F \in \mathcal{F} \) and such that \(f(\mathcal{F}_i) \) is closure-preserving in \(M \) for every \(i \).

Proof. Let \(\mathcal{B} = \bigcup_{j=1}^{\infty} \mathcal{B}_j \) be a net of \(X \) consisting of closed sets such that \(\mathcal{B}_j \) is discrete for each \(j \). For each \(i \) let \(\mathcal{V}_i = \{V_i(B): B \in \mathcal{B}_i\} \) be a discrete collection of open sets of \(X \) such that \(B \subset V_i(B) \) for each \(B \in \mathcal{B}_i \). For \(i, j = 1, 2, \ldots \), \(B \in \mathcal{B}_j \), put

\[W_i(B) = V_i(B) \cap \left(X - \{F: F \in \mathcal{F}_j, F \cap B = \emptyset\}\right) \ast. \]

Then \(W_i(B) \) is an open set of \(X \), and \(\{W_i(B): B \in \mathcal{B}_i\} \) is discrete in \(X \). Hence Lemma 3.1 applies to give a metric space \(M \) and a one-to-one map \(f: X \to M \) such that \(f(W_i(B)) \) is an open set of \(M \) for every \(B \in \mathcal{B}_j \), \(i, j = 1, 2, \ldots \). It is then obvious that for each \(i \), \(f(\mathcal{F}_i) \) is a closure-preserving collection of closed sets of \(M \). This completes the proof.

Definition 3.3. Let \(X \in EM_3 \) and let \(\{\mathcal{F}, \mathcal{V}, \mathcal{G}, \mathcal{S}\} \) be a quartet of collections of subsets of \(X \). The quartet is called an \(E \)-quartet if we can write \(\mathcal{F} = \bigcup_{j=1}^{\infty} \mathcal{F}_j \), \(\mathcal{V} = \bigcup_{j=1}^{\infty} \mathcal{V}_j \), \(\mathcal{G} = \bigcup_{j=1}^{\infty} \mathcal{G}_j \), \(\mathcal{S} = \bigcup_{j=1}^{\infty} \mathcal{S}_j \), and if the following four conditions are satisfied:

\[(1_q) \] \(\mathcal{F} \) is a net on \(X \) consisting of closed sets.
(2q) For each i, \(V_i \) is a discrete collection of open sets of \(X \) written as \(V_i = \{ V_i(F) : F \in \mathcal{T}_i \} \) in such a manner that \(F \subset V_i(F) \) for each \(F \in \mathcal{T}_i \).

(3q) \(\mathcal{S} \) is an E-net on \(X \) consisting of closed sets and \(\mathcal{S}_i \) is closure-preserving for each \(i \).

(4q) \(\mathcal{S} \) is a quasi-base\(^4\) for \(X \) consisting of closed sets and \(\mathcal{S}_i \) is closure-preserving for each \(i \).

By Heath [H], Gruenhage [G] and Junnila [J], each member of \(EM_3 \) admits an E-quartet.

Definition 3.4. Let \(X \) be a member of \(EM_3 \) with an E-quartet \(\{ \mathcal{G}, \mathcal{V}, \mathcal{S}, \mathcal{S} \} \). A map \(f: X \to Y \) onto a normal space \(Y \) is called an E-map with respect to the E-quartet if the following five conditions are satisfied:

(0f) \(f \) is one-to-one.

(1f) \(f(F) \) is a closed set for every \(F \in \mathcal{G} \).

(2f) \(f(V) \) is an open set for every \(V \in \mathcal{V} \).

(3f) \(f(E) \) is a closed set for every \(E \in \mathcal{S} \), and \(f(\mathcal{S}_i) \) is closure-preserving in \(Y \) for every \(i \).

(4f) \(f(S) \) is a closed set for every \(S \in \mathcal{S} \), and \(f(\mathcal{S}_i) \) is closure-preserving in \(Y \) for every \(i \).

Noting that \(\{ X - V : V \in \mathcal{V} \} \) is a \(\sigma \)-closure-preserving collection of closed sets of \(X \), we have the following result by virtue of Lemma 3.2.

Proposition 3.5. Let \(X \) be a member of \(EM_3 \). Then for any E-quartet of \(X \) there exist a metric space \(M \) and an E-map \(f: X \to M \) with respect to the E-quartet.

The following lemma is well known (see, for example, [E, 2.3.16]).

Lemma 3.6. Let \(X \) be a space and let \(C, K \) be disjoint closed sets of \(X \). Let \(\mathcal{U} \) be a countable open cover of \(X \) such that for each \(U \in \mathcal{U} \), either \(U \cap C = \emptyset \) or \(U \cap K = \emptyset \). Then \(C \) and \(K \) are separated by a closed set \(S \) such that \(S \subset \{ \text{Bd } U : U \in \mathcal{U} \}^* \).

Now we have the following result frequently used later.

Proposition 3.7. Let \(X \) be a member of \(EM_3 \) with an E-quartet \(\{ \mathcal{G}, \mathcal{V}, \mathcal{S}, \mathcal{S} \} \). Let \(f: X \to Y \) be an E-map with respect to the E-quartet onto a normal space \(Y \). Then \(\text{Ind } X \leq \text{Ind } Y \).

Proof. The proof is by induction on \(\text{Ind } Y \). If \(Y = \emptyset \) then the proposition is trivial. Suppose that the proposition is valid when \(\text{Ind } Y < n - 1 \) and consider the case of \(\text{Ind } Y = n \). To show \(\text{Ind } X \leq n \), let \(C, K \) be disjoint closed sets of \(X \). For the time being, fix a point \(x \) in \(X - C \) arbitrarily. We show that there exists an open neighborhood \(W \) of \(x \) such that \(\overline{W} \cap C = \emptyset \) and \(\text{Ind } \text{Bd } W \leq n - 1 \). Let \(\mathcal{S}(x) \) be a subcollection of \(\mathcal{S} \) such that \(x \in X - \mathcal{S}(x)^* \subset X - C \) and \(\mathcal{S}(x)^* \) is a closed set. Write \(\mathcal{S}(x) \) is the closure of \(\mathcal{S}_i(x) \) where \(\mathcal{S}_i(x) \subset \mathcal{S}_i \). Put \(\mathcal{S}_i(x) = \{ S \in \mathcal{S}_i : S \cap \mathcal{S}_i(x)^* = \emptyset \} \).

\(^4\) A collection \(\mathcal{S} \) of subsets of a space \(X \) is called a quasi-base for \(X \) if for any point \(x \) and any open neighborhood \(U \) of \(x \) there exists a member \(S \) of \(\mathcal{S} \) such that \(x \in \text{Int } S \subset S \subset U \).
and $S(x) = \bigcup_{i=1}^{\infty} S_i(x)$. Fix i_0 so that $x \in \text{Int } S_{i_0}(x)^*$. By (3_1) and (4_1) there exist open sets $O_j, j = 1, 2, \ldots$, of Y such that

$$f\left(\bigcup_{j=1}^{j} S_i(x)^*\right) \cup f(S_{i_0}(x)^*) \subset O_j \subset \overline{O}_j \subset Y - f(S_j(x)^*)$$

and

$$\text{Ind Bd } O_j \leq n - 1.$$ Define $W = \bigcap_{j=1}^{\infty} f^{-1}(O_j)$. Then

$$x \in W \subset \overline{W} \subset \bigcap_{j=1}^{\infty} f^{-1}(\overline{O}_j) \subset X - \delta(x)^* \subset X - C.$$ To show that W is open, let $x' \in W$. Since $x' \in X - \delta(x)^*$ and $\delta(x)^*$ is a closed set, it follows from (4_2) that $x' \in \text{Int } S_m(x)^*$ for some m. Then

$$x' \in \bigcap_{j=1}^{m-1} f^{-1}(O_j) \cap \text{Int } S_m(x)^* \subset W,$$

which implies that W is open. To show $\text{Ind Bd } W \leq n - 1$, note that, for any subset Z of X, $f| Z : Z \to f(Z)$ is again an E-map with respect to the E-quartet $\{\overline{F} | Z, \forall | Z, S | Z, S | Z\}$ on Z. Hence we may apply induction hypothesis to obtain $\text{Ind } f^{-1}(\text{Bd } O_j) \leq n - 1, j = 1, 2, \ldots$, which yields

$$\text{Ind Bd } W \leq \text{Ind} \left(\bigcup_{j=1}^{\infty} \text{Bd } f^{-1}(O_j)\right)$$

$$= \max\{\text{Ind Bd } f^{-1}(O_j) : j = 1, 2, \ldots\}$$

$$\leq \max\{\text{Ind } f^{-1}(\text{Bd } O_j) : j = 1, 2, \ldots\} \leq n - 1.$$ Hence W is a required open neighborhood of x; we have thus finished “local” separation.

Now put

$$\mathcal{F}_i(C) = \{F \in \mathcal{F}_i : F \subset W \text{ for some open set } W \text{ with } \overline{W} \cap C = \emptyset \text{ and } \text{Ind Bd } W \leq n - 1\}.$$ Then by (1_4) and by the “local” separation above, we have $\bigcup_{i=1}^{\infty} \mathcal{F}_i(C)^* = X - C$. For each $F \in \mathcal{F}_i(C)$, fix such a W and denote it by $W_i(C, F)$. On the other hand, by (1_4) and (2_4), there exist open sets $H_i(F), F \in \mathcal{F}_i$, of Y such that $f(F) \subset H_i(F) \subset \overline{H_i(F)} \subset f(V_i(F))$ and $\text{Ind Bd } H_i(F) \leq n - 1$ (where the set $V_i(F)$ is as in Definition 3.3(2_4)). By induction hypothesis again,

$$\text{Ind Bd } f^{-1}(H_i(F)) \leq \text{Ind } f^{-1}(\text{Bd } H_i(F)) \leq n - 1.$$ Put for each $F \in \mathcal{F}_i(C)$,

$$D_i(C, F) = W_i(C, F) \cap f^{-1}(H_i(F)).$$ Then

$$\text{Ind Bd } D_i(C, F) \leq \max\{\text{Ind Bd } W_i(C, F), \text{Ind Bd } f^{-1}(H_i(F))\} \leq n - 1.$$
Put $D_i(C) = \{D_i(C, F): F \in \mathcal{F}(C)\}$. Since $D_i(C, F) \subseteq V_i(F)$, (2_q) implies that $\{D_i(C, F): F \in \mathcal{F}(C)\}$ is discrete. Thus $\text{Ind} \text{ Bd } D_i(C) < n - 1$, $i = 1, 2, \ldots$. By the same discreteness and by the fact $D_i(C, F) \subseteq W_i(C, F) \subseteq \text{Cl} W_i(C, F) \subseteq X - C$, we have $C \cap \text{Cl} D_i(C) = \emptyset$ for every $i = 1, 2, \ldots$. We also obtain $\bigcup_{i=1}^{\infty} D_i(C) = X - C$ because $\bigcup_{i=1}^{\infty} \mathcal{F}(C)^* = X - C$.

Quite similarly we can obtain open subsets $D_i(K)$, $i = 1, 2, \ldots$, such that $\text{Ind} \text{ Bd } D_i(K) < n - 1$, $K \cap \text{Cl} D_i(K) = \emptyset$ and $\bigcup_{i=1}^{\infty} D_i(K) = X - K$. Hence, applying Lemma 3.6, we have a closed set B separating C and K such that

$$B \subseteq \left(\bigcup_{i=1}^{\infty} \text{ Bd } D_i(C) \right) \cup \left(\bigcup_{i=1}^{\infty} \text{ Bd } D_i(K) \right).$$

By the countable sum theorem for Ind, we have $\text{Ind } B \leq n - 1$. Thus $\text{Ind } X \leq n$, which completes the proof of Proposition 3.7.

We can now prove a characterization theorem for EM_3.

Theorem 3.8. The following statements about a space X are equivalent:

1. X is a stratifiable space with a σ-closure-preserving E-net.
2. X is the perfect image of a stratifiable space X_0 with $\dim X_0 \leq 0$.
3. X is the closed image of a stratifiable space X_0 with $\text{ind } X_0 \leq 0$.
4. X is a stratifiable space with a σ-closure-preserving LE-net.

Proof. The implications (2) \rightarrow (3) and (4) \rightarrow (1) are obvious. To show (1) \rightarrow (2) let X be a member of EM_3 with an E-quartet $\{\mathcal{F}, \mathcal{V}, \mathcal{S}, \mathcal{S}\}$. By Proposition 3.5 there exists an E-map $f: X \to M$ onto a metric space M with respect to $\{\mathcal{F}, \mathcal{V}, \mathcal{S}, \mathcal{S}\}$. By Morita [M], M is the image of a metric space P with $\dim P \leq 0$ under a perfect map g. Now let T be the fiber product of P and X with respect to g and f, that is,

$$T = \{(p, x) \in P \times X: g(p) = f(x)\}$$

with the topology induced from $P \times X$. Let t_p, t_x be the restrictions to T of the projections from $P \times X$ onto P and X, respectively. We thus have the following commutative diagram:

$$\begin{array}{ccc}
X & \xrightarrow{t_x} & T \\
\downarrow f & & \downarrow t_p \\
M & \xleftarrow{g} & P
\end{array}$$

It is a well-known property of fiber products that the perfectness of g implies the perfectness of t_X (see [Pe, Lemma 7.5.13]). T is stratifiable by [C, Theorems 2.3, 2.4]. Hence what should be proved is the zero-dimensionality of T. By Proposition 2.2, P admits an E-quartet $\{\mathcal{F}_p, \mathcal{V}_p, \mathcal{S}_p, \mathcal{S}_p\}$. Now define

$$\begin{align*}
\mathcal{F}_T &= \{t_p^{-1}(F_p) \cap t_X^{-1}(F): F_p \in \mathcal{F}_p, F \in \mathcal{F}\}, \\
\mathcal{V}_T &= \{t_p^{-1}(V_p) \cap t_X^{-1}(V): V_p \in \mathcal{V}_p, V \in \mathcal{V}\}, \\
\mathcal{S}_T &= \{t_p^{-1}(S_p) \cap t_X^{-1}(S): S_p \in \mathcal{S}_p, S \in \mathcal{S}\}, & \text{and} \\
\mathcal{E}_T &= \{t_p^{-1}(E_p): E_p \in \mathcal{E}_p\} \cup \{t_X^{-1}(E): E \in \mathcal{E}\}.
\end{align*}$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Then it is easy to see that the quartet \((\mathcal{S}_T, \mathcal{V}_T, \mathcal{S}_T, \mathcal{S}_T)\) is an \(E\)-quartet of \(T\). Furthermore, the map \(t_p\) is an \(E\)-map with respect to \(\{\mathcal{S}_T, \mathcal{V}_T, \mathcal{S}_T, \mathcal{S}_T\}\) because, in general, \(t_p (t^{-1}_p (P') \cap \mathcal{V}_X (X')) = P' \cap g^{-1} \circ f(X')\) for any \(P' \subset P\) and \(X' \subset X\), and because \(f\) is an \(E\)-map with respect to \(\{\mathcal{S}, \mathcal{V}, \mathcal{S}, \mathcal{S}\}\). Hence, applying Proposition 3.7, we have \(\text{Ind} \ T \leq 0\). Thus the implication \((1) \rightarrow (2)\) has been proved.

To show \((3) \rightarrow (4)\) let \(X_0\) be a stratifiable space with \(\text{ind} \ X_0 \leq 0\) and let \(f: X_0 \rightarrow X\) be a closed map. Note that every net on \(X_0\) is an \(E\)-net; hence \(X_0\) is a member of \(EM_3\) by Heath [H]. It now follows from the implication \((1) \rightarrow (2)\) that \(X_0\) is the image of a stratifiable space \(X_1\) with \(\dim X_1 \leq 0\) under a perfect map \(h\). Since every net on \(X_1\) is an \(LE\)-net, it follows from Heath [H] again that \(X_1\) admits a \(\sigma\)-closure-preserving \(LE\)-net. Hence, applying Proposition 2.3 to the closed map \(f \circ h\), we see that \(X\) admits a \(\sigma\)-closure-preserving \(LE\)-net. On the other hand \(X\) is stratifiable by Borges [B, Theorem 3.1]. This completes the proof of Theorem 3.8.

Corollary 3.9. The class \(EM_3\) is countably productive, hereditary and preserved under closed maps.

Proof. This is immediate from Theorem 3.8, Proposition 2.6 and the analogous result for \(M_3\) due to Ceder [C] and Borges [B].

A topological class \(\mathcal{C}\) is called \textit{perfect} (Nagami [N], also see [N2]) if it is countably productive, hereditary, preserved under perfect maps, included in the class of normal spaces, and every member of \(\mathcal{C}\) is the perfect image of a zero-dimensional (in the sense of \(\dim\)) member of \(\mathcal{C}\). Theorem 3.8 and Corollary 3.9 say

Corollary 3.10. The class \(EM_3\) is the maximal perfect subclass of \(M_3\).

Recently Itô [I] has presented a free \(L\)-space, a certain closed image of which is not a free \(L\)-space. But we have

Corollary 3.11. Every closed image of a free \(L\)-space is a member of \(EM_3\).

Proof. By Nagami [N4, Theorem 2.10] and Theorem 3.8, every free \(L\)-space is a member of \(EM_3\) (it is also easy to directly prove that every free \(L\)-space admits a \(\sigma\)-closure-preserving \(E\)-net). Hence this corollary is immediate from Corollary 3.9.

4. Dimension for \(EM_3\). We begin with the equidimensional \(G_\delta\)-envelope theorem. To show this, the following lemma is useful.

Lemma 4.1 (Oka [O4, Lemma 3.3]). Let \(X\) be a hereditarily normal space and let \(f: X \rightarrow L\) be a map onto a metric space \(L\). Then for any subset \(Y \subset X\), there exist a \(G_\delta\)-set \(Z\) of \(X\), a metric space \(M\) and maps \(g: Z \rightarrow M\), \(h: M \rightarrow f(Z)\) such that

(i) \(Y \subset Z\),

(ii) \(\dim g(Y) \leq \dim Y\) and

(iii) \(f \mid Z = h \circ g\).

Theorem 4.2. Let \(X \in EM_3\) and let \(Y\) be a subset of \(X\) with \(\dim Y \leq n\). Then there exists a \(G_\delta\)-set \(G\) of \(X\) such that \(Y \subset G\) and \(\dim G \leq n\).

Proof. Let \(f: X \rightarrow L\) be an \(E\)-map onto a metric space \(L\) with respect to an \(E\)-quartet, say \(\{\mathcal{S}, \mathcal{V}, \mathcal{S}, \mathcal{S}\}\), on \(X\). By the above lemma there exist a \(G_\delta\)-set \(Z\) of \(X\), a
metric space M and maps $g: Z \to M$, $h: M \to f(Z)$ satisfying (i), (ii), (iii) above. Since $\dim g(Y) \leq n$ and M is metrizable, we can find a G_δ-set H of M such that $g(Y) \subset H$ and $\dim H \leq n$ (see, for example, [E, 4.1.19]). Define $G = g^{-1}(H)$. Then G is a G_δ-set of Z, and hence of X. To show $\dim G \leq n$, note that $g|G$ is an E-map with respect to $\{\mathcal{F}|G, \mathcal{V}|G, \mathcal{S}|G, \mathcal{S}|G\}$ because $f|G$ is so and because $f|G = h \circ g|G$ by (iii). Hence by Proposition 3.7 we have $\text{Ind} G \leq \text{Ind} H$. Consequently

$$\dim G \leq \text{Ind} G \leq \text{Ind} H = \dim H \leq n,$$

as required. This completes the proof.

The following theorem occupies the central position in dimension theory of EM_3. The key argument of the proof has already appeared in the proof of Theorem 3.8.

Theorem 4.3. The following statements about a space X are equivalent:

1. $X \in EM_3$ and $\dim X \leq n$.
2. X is the image of a stratifiable space X_0 with $\dim X_0 \leq 0$ under a perfect map of order not greater than $n + 1$.
3. X is a stratifiable space which is the union of G_δ-sets X_i, $1 \leq i \leq n + 1$, with $\dim X_i \leq 0$.
4. $X \in EM_3$ and $\text{Ind} X \leq n$.

Proof. $(1) \rightarrow (2)$. Let X be a member of EM_3 such that $\dim X \leq n$. Let $\{\mathcal{F}, \mathcal{V}, \mathcal{S}, \mathcal{S}\}$ be an E-quartet of X. By Proposition 3.5 there exist a metric space L and an E-map $f: X \to L$ with respect to the E-quartet. By Pasynkov's factorization theorem [P, Theorem 29], there exist a metric space M and maps $g: X \to M$, $h: M \to L$ such that $\dim M \leq n$ and $f = h \circ g$. It then follows from Morita [M] that M is the image of a metric space P with $\dim P \leq 0$ under a perfect map r such that $\text{ord} r \leq n + 1$. Let T be the fiber product of P and X with respect to r and g, and let t_P, t_X be the restrictions to T of the projections from $P \times X$ onto P and X, respectively. We thus obtain the following commutative diagram:

$$
\begin{array}{ccc}
X & = & X \\
\downarrow f & & \downarrow g \\
L & \leftarrow & M \\
\downarrow h & & \downarrow t_P \\
T & \leftarrow & P
\end{array}
$$

It is obvious that t_X is a perfect map of order not greater than $n + 1$ and that T is a stratifiable space. Note that g is an E-map with respect to $\{\mathcal{F}, \mathcal{V}, \mathcal{S}, \mathcal{S}\}$ because f is so and $f = h \circ g$. Now, as in the proof of Theorem 3.8, t_P is also an E-map with respect to a certain E-quartet of T, and hence $\dim T \leq 0$ by Proposition 3.7.

$(2) \rightarrow (3)$. Let $t: X_0 \to X$ be a perfect map from a stratifiable space X_0 with $\dim X_0 \leq 0$ onto a space X such that $\text{ord} t \leq n + 1$. Put $Y_i = \{x \in X: |t^{-1}(x)| = i\}$, $1 \leq i \leq n + 1$. It then follows from Nagami [N2, Lemma 4] that $\dim Y_i \leq 0$ for each $i = 1, 2, \ldots, n + 1$. Since X is a member of EM_3 by Theorem 3.8, we may apply Theorem 4.2 to obtain G_δ-sets X_i, $1 \leq i \leq n + 1$, such that $\dim X_i \leq 0$ and $Y_i \subset X_i$.

The implication $(4) \rightarrow (1)$ is trivial.
Finally the implication (3) \(\Rightarrow\) (4) is assured by the following theorem (but the fact \(\text{Ind } X \leq n\) only is direct from (3) as a consequence general for hereditarily normal spaces).

Theorem 4.4. Let \(X\) be a normal \(\sigma\)-space expressed as the finite union of \(G_\delta\)-sets \(X_i\), \(1 \leq i \leq k\), such that \(\dim X_i \leq 0\). Then \(X\) admits a \(\sigma\)-closure-preserving \(LE\)-net.

Proof. The proof is by induction on \(k\). When \(k = 1\), the theorem is trivial. Now suppose that the theorem is valid when \(k = m - 1\), and consider the case \(k = m\). Put \(Y_m = X - X_m\). Then by induction hypothesis and Lemma 2.5, the normal \(\sigma\)-space \(Y_m\) admits a \(\sigma\)-closure-preserving \(LE\)-net, say \(\mathcal{E}\), consisting of closed sets of \(Y_m\). Write \(Y_m = \bigcup_{i=1}^{\infty} C_i\) with closed sets \(C_i\) such that \(C_i \subset C_{i+1}\), and put \(\mathcal{E}_i = \mathcal{E} \mid C_i\). Let \(\mathcal{F}\) be a \(\sigma\)-locally finite net of \(X\). Now consider the \(\sigma\)-closure-preserving collection \(\bigcup_{i=1}^{\infty} \mathcal{E}_i \cup \mathcal{F}\) of \(X\). To show that the collection is an \(LE\)-net on \(X\), let \(C, K\) be disjoint closed sets of \(X\). Since \(X\) is hereditarily normal and \(\text{Ind } X_m \leq 0\), there exists a closed set \(S\) separating \(C\) and \(K\) such that \(S \cap X_m = \emptyset\). Represent \(X\) as the disjoint union \(V \cup S \cup W\), where \(V\) and \(W\) are open sets of \(X\) including \(C\) and \(K\) respectively. Write \(V = \bigcup_{i=1}^{\infty} V_i\) with open sets \(V_i\) such that \(V_i \subset V_{i+1}\) for every \(i\). For each \(i\) take a subcollection \(\mathcal{E}_i\) of \(\mathcal{E}_j\) such that

\[
(W \cup S) \cap C_i \subset \big|_{i}^{*} \subset C_i - (V_i \cup C)
\]

and \(\big|_{i}^{*}\) is a closed set of \(C_i\). Now put

\[
B = W \cup \left(\bigcup_{i=1}^{\infty} \big|_{i}^{*} \right).
\]

It is easy to see that \(B\) is a closed set of \(X\) including \(K\) and not meeting \(C\). Since \(W\) is the union of some members of \(\mathcal{F}\), \(B\) is the union of some members of \(\bigcup_{i=1}^{\infty} \mathcal{E}_i \cup \mathcal{F}\). Thus \(\bigcup_{i=1}^{\infty} \mathcal{E}_i \cup \mathcal{F}\) is a \(\sigma\)-closure-preserving \(LE\)-net on \(X\). This completes the proof of Theorem 4.4 and, therefore, of Theorem 4.3.

Remark. Slightly modifying the above proof, we can weaken the condition "\(X_i\) is \(G_\delta\)" in Theorem 4.4 to "\(X_i\) is either \(G_\delta\) or \(F_\sigma\)."

As a trivial version of Theorem 4.4, we have the following result which tells us that the dimension theory does not work well in the remainder \(M_3 - EM_3\).

Corollary 4.5. Let \(X\) be a normal \(\sigma\)-space not admitting a \(\sigma\)-closure-preserving \(LE\)-net. Then either

1. \(X\) cannot be decomposed into finitely many zero-dimensional (in the sense of \(\dim\)) subsets, or
2. there exists a zero-dimensional (in the sense of \(\dim\)) subset of \(X\) not admitting an equidimensional \(G_\delta\)-envelope.

As an immediate consequence of Theorem 4.3, we have

Corollary 4.6. Let \(X\) be a stratifiable space with \(\text{ind } X \leq 0\). Then \(\dim X = \text{Ind } X\).

Remark. This result, however, is generalized to paracompact \(\sigma\)-spaces in my recent paper [Oka].
We conclude this section with the following result, an immediate consequence of Corollary 3.11 and Theorem 4.3.

Corollary 4.7. Let X be the closed image of a free L-space. Then $\dim X = \text{Ind } X$.

5. Other spaces admitting $σ$-closure-preserving E-nets. Let C be a topological property. A space is called *peripherally* C if every point in the space admits an open neighborhood base, the boundary of each member of which is C.

Theorem 5.1. (1) A peripherally $σ$-discrete, paracompact $σ$-space admits a $σ$-closure-preserving E-net.

(2) A peripherally $σ$-compact, stratifiable space admits a $σ$-closure-preserving E-net.

Proof. We shall prove (1) and (2) simultaneously. Let \mathcal{F} be a $σ$-locally finite net (resp. a $σ$-closure-preserving quasi-base) of X consisting of closed sets. To show that \mathcal{F} itself is an E-net on X let x be a point of X and V an open neighborhood of x.

Take an open set U such that $x \in U \subseteq \overline{U} \subseteq V$ and $\text{Bd } U$ is $σ$-discrete (resp. $σ$-compact). Write $U = \bigcup_{i=1}^{\infty} U_i$ with open sets U_i such that $\overline{U}_i \subseteq U_{i+1}$ for every i. Write $\text{Bd } U = \bigcup_{i=1}^{\infty} C_i$ with discrete (resp. compact) closed sets C_i, $i = 1, 2, \ldots$. There exists, for each i, a discrete (resp. finite) subcollection \mathcal{F}_i of \mathcal{F} such that $C_i \subseteq \mathcal{F}_i \subseteq X - (\overline{U}_i \cup \{x\})$. Then $\bigcup_{i=1}^{\infty} \mathcal{F}_i \cup (X - \overline{U})$ is a closed set of X including $X - V$, not meeting $\{x\}$ and expressed as a union of members of \mathcal{F}. Thus \mathcal{F} is an E-net of X, which completes the proof.

Now we have the following generalization of Corollary 4.6.

Corollary 5.2. Let X be a peripherally $σ$-compact (or peripherally $σ$-discrete) stratifiable space. Then $\dim X = \text{Ind } X$.

We next verify a countable sum theorem for $σ$-closure-preserving LE-nets.

Theorem 5.3. Let X be a normal space expressed as the countable union of closed sets X_i, $i = 1, 2, \ldots$, each of which admits a $σ$-closure-preserving LE-net. Then X has a $σ$-closure-preserving LE-net.

Proof. Note that X is perfectly normal because each X_i is. Let \mathcal{G}_i be a $σ$-closure-preserving LE-net of X_i. It is clear that $\bigcup_{i=1}^{\infty} \mathcal{G}_i$ is $σ$-closure-preserving in X. To show that $\bigcup_{i=1}^{\infty} \mathcal{G}_i$ is an LE-net, let C and K be disjoint closed sets of X. Write $X - C = \bigcup_{i=1}^{\infty} V_i$ with open sets V_i such that $\overline{V}_i \subseteq V_{i+1}$. For each i let \mathcal{F}_i be a subcollection of \mathcal{G}_i such that $\bigcap_{i=1}^{\infty} \mathcal{F}_i$ is a closed set of X_i and $C \cap X_i \subseteq \bigcap_{i=1}^{\infty} \mathcal{F}_i \subseteq X_i - (K \cup \overline{V}_i)$. It is then obvious that $\bigcup_{i=1}^{\infty} \mathcal{F}_i$ is a closed set of X and $C \subseteq \bigcup_{i=1}^{\infty} \mathcal{F}_i \subseteq X - K$. This completes the proof.

The following result is immediate from Theorem 5.3, Proposition 2.2 and Ceder [C, Theorem 8.3].

Corollary 5.4. A chunk complex (and hence a CW-complex) is a member of EM_3.

We list several unsolved problems below.
Problem 5.5. (1) Does every stratifiable space admit a σ-closure-preserving E-net? By virtue of Theorem 3.8, this is equivalent to:

(2) (Nagami [N, Problem 4]) Is every stratifiable space a perfect image of a zero-dimensional (in the sense of dim) stratifiable space?

The author also does not know whether the inclusion $EM_3 \subset M_4$ (or $M_4 \subset EM_3$) holds or not.

Problem 5.6. Let X be a paracompact σ-space admitting a σ-closure-preserving E-net. Then:

(1) Does the equality $\dim X = \text{Ind} X$ hold?

(2) Is X a perfect image of a zero-dimensional (in the sense of dim) paracompact σ-space? More weakly:

(3) Does X admit a σ-closure-preserving LE-net?

In the specific case of $\text{ind} X \leq 0$, (1) admits an affirmative answer by the inequality $\text{Ind} X \leq \dim X + \text{ind} X$ for every nonempty paracompact σ-space X [O8]; (2) is also affirmative, that is, a paracompact σ-space of $\text{ind} \leq 0$ is the perfect image of a paracompact σ-space of dim ≤ 0.

To outline the proof, let X be a nonempty paracompact σ-space with $\text{ind} X = 0$. Let $\mathcal{F} = \bigcup_{i=1}^{\infty} \mathcal{F}_i$ and $\mathcal{V} = \bigcup_{i=1}^{\infty} \mathcal{V}_i$ be as in Definition 3.3. Let $f: X \to M$ be a one-to-one map onto a metric space M such that $f(\mathcal{V}_i^*)$ is open and $f(\mathcal{F}_i^*)$ is closed for every i. In [O8, Lemma 5] it is proved that, in general, $\text{Ind} X \leq \text{Ind} M + \text{ind} X$ for any such map $f: X \to M$. The metric space M is the image of a metric space L with $\dim L = 0$ under a perfect map g. Let T be the fiber product of L and X with respect to g and f. Let t_L, t_X be the restrictions to T of the projections from $L \times X$ onto L and X, respectively. Then, since the map t_L is of the “same type” as f, we have $\text{Ind} T \leq \text{Ind} L + \text{ind} T = \text{ind} T$. But, in the present case, $\text{ind} T \leq \text{ind}(L \times X) = 0$; hence $\text{Ind} T = 0$. It is clear that T is a paracompact σ-space and t_X is a perfect map. This completes the proof.

Problem 5.7. Let X be a stratifiable space expressed as the union of countably many metrizable (G_δ) subsets. Does the equality $\dim X = \text{Ind} X$ hold? More strongly, does X admit a σ-closure-preserving E-net? (A space of this type is a natural generalization of a Lašnev space in view of Lašnev's well-known decomposition theorem [La].)

BIBLIOGRAPHY

DIMENSION OF STRATIFIABLE SPACES

DEPARTMENT OF MATHEMATICS, KANAGAWA UNIVERSITY, ROKKAKU-BASHI, KANAGAWA-KU, YOKOHAMA, 221, JAPAN

Current address: Faculty of Education, Kagawa University, Saiwai-chō, Takamatsu, 760, Japan