Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On generalized Peano derivatives


Author: Cheng Ming Lee
Journal: Trans. Amer. Math. Soc. 275 (1983), 381-396
MSC: Primary 26A24; Secondary 26A39
DOI: https://doi.org/10.1090/S0002-9947-1983-0678358-2
MathSciNet review: 678358
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A function $ F$ is said to have a generalized $ n$th Peano derivative at $ x$ if $ F$ is continuous in a neighborhood of $ x$ and if there exists a positive integer $ k$ such that a $ k$th primitive of $ F$ in the neighborhood has the $ (k + n)$th Peano derivative at $ x$; and in this case this $ (k + n)$th Peano derivative at $ x$ is proved to be independent of the integer $ k$ and the $ k$th primitives, and is called the generalized $ n$th Peano derivative of $ F$ at $ x$ which is denoted as $ {F_{[n]}}(x)$. If $ {F_{[n]}}(x)$ exists and is finite for all $ x$ in an interval, then it is shown that $ {F_{[n]}}$ shares many interesting properties that are known for the ordinary Peano derivatives. Using the generalized Peano derivatives, a notion called absolute generalized Peano derivative is studied. It is proved that on a compact interval, the absolute generalized Peano derivatives are just the generalized Peano derivatives. In particular, Laczkovich's absolute (ordinary) Peano derivatives are generalized Peano derivatives.


References [Enhancements On Off] (What's this?)

  • [1] B. S. Babcock, On the properties of the approximate Peano derivatives, Trans. Amer. Math. Soc. 212 (1975), 279-294. MR 0414803 (54:2895)
  • [2] J. A. Bergin, A new characterization of Cesàro-Perron integrals using Peano derivatives, Trans. Amer. Math. Soc. 228 (1977), 287-305. MR 0435312 (55:8272)
  • [3] P. S. Bullen and S. N. Mukhopadhyay, Peano derivatives and general integrals, Pacific J. Math. 47 (1973), 43-58. MR 0327990 (48:6332)
  • [4] -, On the Peano derivatives, Canad. J. Math. 15 (1973), 127-140. MR 0311845 (47:407)
  • [5] J. C. Burkill, The Cesàro-Perron scale of integration, Proc. London Math. Soc. (2) 39 (1935), 541-552.
  • [6] A. Denjoy, Sur l'intégration des coefficients différentiels d'ordre supérieur, Fund. Math. 25 (1935), 273-326.
  • [7] M. J. Evans, $ {L_p}$ derivatives and approximate Peano derivatives, Trans. Amer. Math. Soc. 165 (1972), 381-388. MR 0293030 (45:2110)
  • [8] M. Laczkovich, On the absolute Peano derivatives, Ann. Univ. Sei. Budapest. Eötvös Sect. Math. 21 (1978), 83-97. MR 536205 (80g:26012)
  • [9] C. M. Lee, Generalizations of Cesàro continuous functions and integrals of Perron type, Trans. Amer. Math. Soc. 266 (1981), 461-481. MR 617545 (83b:26010)
  • [10] -, On the approximate Peano derivatives, J. London Math. Soc. 12 (1976), 475-478. MR 0399378 (53:3222)
  • [11] -, An approximate extension of Cesàro-Perron integrals, Bull. Inst. Acad. Sinica 4 (1976), 73-82. MR 0412358 (54:484)
  • [12] -, Note on the oscillatory behavior of certain derivatives, Real Anal. Exchange 4 (1979), 178-183.
  • [13] C. M. Lee and R. J. O'Malley, The second approximate derivative and the second approximate Peano derivative, Bull. Inst. Math. Acad. Sinica 3 (1975), 193-197. MR 0382563 (52:3446)
  • [14] S. Lojasiewicz, Sur la valeur et la limite d'une distribution en un point, Studia Math. 16 (1957), 1-36. MR 0087905 (19:433d)
  • [15] S. N. Mukhopadhyay, On the approximate Peano derivatives, Fund. Math. 88 (1975), 133-143. MR 0376974 (51:13149)
  • [16] H. W. Oliver, The exact Peano derivative, Trans. Amer. Math. Soc. 76 (1954), 444-456. MR 0062207 (15:944d)
  • [17] R. J. O'Malley and C. E. Weil, The oscillatory behavior of certain derivatives, Trans. Amer. Math. Soc. 234 (1977), 467-481. MR 0453940 (56:12193)
  • [18] S. Saks, Theory of the integral, Warsaw, 1937.
  • [19] W. L. C. Sargent, A descriptive definition of Cesàro-Perron integrals, Proc. London Math. Soc. (2) 47 (1942), 212-247. MR 0005897 (3:228a)
  • [20] -, On generalized derivatives and Cesàro-Denjoy integrals, Proc. London Math. Soc. (2) 52 (1951), 365-376. MR 0041199 (12:811a)
  • [21] S. Verblunsky, On the Peano derivatives, Proc. London Math. Soc. (3) 22 (1971), 313-324. MR 0285678 (44:2896)
  • [22] -, On a descriptive definition of Cesàro-Perron integrals, J. London Math. Soc. (2) 3 (1971), 326-333. MR 0286954 (44:4161)
  • [23] C. E. Weil, On properties of derivatives, Trans. Amer. Math. Soc. 114 (1965), 363-376. MR 0176007 (31:283)
  • [24] -, A property for certain derivatives, Indiana Univ. Math. J. 23 (1973), 527-536. MR 0335703 (49:483)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 26A24, 26A39

Retrieve articles in all journals with MSC: 26A24, 26A39


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0678358-2
Keywords: Peano derivative, generalized Peano derivative, absolute Peano derivative, absolute generalized Peano derivative, Cesaro-Perron integrals, Darboux property, Denjoy property, approximate Peano derivative
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society