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GENERIC ALGEBRAS
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JOHN ISBELL

Abstract. The familiar (merely) generic algebras in a variety "V are those which

separate all the different operations of CV, or equivalently lie in no proper Birkhoff

subcategory. Stronger notions are considered, the strongest being canonicalness of a

(small) subcategory & of T, defined: the structure functor takes inclusion â <Z"{ to

an isomorphism of varietal theories. Intermediate are dominance and exemplariness:

lying in no proper varietal subcategory, respectively full subcategory. It is shown

that, modulo measurable cardinals, every finitary variety has a canonical set (subcat-

egory) of one or two algebras, the possible second one being the empty algebra.

Without reservation, every variety with rank has a dominant set of one or two

algebras (the second as before). Finally, in modules over a ring R, the generic

module R is shown to be (a) dominant if exemplary, and (b) dominant if R is

countable or right artinian. However, power series rings R and some others are not

dominant Ä-modules.

Introduction. A variety (of algebras) will mean, in this paper, a varietal (or

tripleable) category over sets. This is substantially just the class of all algebras

having certain operations and satisfying certain defining equations—e.g. semi-

groups, rings, lattices—but note that the operations may be infinitary, and it is not

even required that their arities be bounded. However, the main results below

(Theorems 2, 3, 4) require a cardinal bound on the arities (a rank), and two-thirds of

them require all operations to be finitary.

An algebra A is called generic in the variety Tin case one can determine 'A from A

alone, in the sense that the defining equations of Tare those which hold identically

in A. It is almost trivial that each variety with rank has a generic algebra. But Tis

recoverable from generic A only if we have already decided what the operations are.

Observe, for instance, that a free group G on two generators is generic in the variety

T of semigroups; though G belongs to the smaller variety % of groups, % is not a

" variety of semigroups" (not defined, among semigroups, by equations).

We shall consider three strengthenings of "generic", increasing toward the begin-

ning of the alphabet: exemplary, dominant, canonical. The strongest is the simplest:

an algebra A is canonical in a variety T if A is generic in T and every function of n

variables, A: A" -» A (for any cardinal n), which commutes with all endomorphisms

of A is an operation (possibly composite) of T.

If these cardinals n are restricted, the existence of relatively canonical algebras is

easy (and it has the following history: Whenever operations A(x,,...,x„) were
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identified as words and, however large n may be, as elements of a free algebra on S0

generators, in effect there it was. For groups Schreier's work made it plain in the

1920's. Of course, the process of passing from an algebra, or precisely from a

convenient countable set of them, to the canonically associated variety was not

explicitly considered until it became part of a larger system in Lawvere's work [11].)

We are concerned with unrestricted n, and thus, in a sense, all our results involve

(hypothetical) infinitary algebras. The existence theorem for canonical algebras says,

with two reservations, that a variety with only finitary operations has a canonical

algebra. Reservation 1 is universe-theoretic; in fact, the theorem is totally false if

there is a proper class of measurable cardinals. (Set theorists regard this as a

desirable state—perhaps because it makes general topology, functional analysis, and

general algebra so cardinally obscure that only a professional set theorist can

understand them.) "Totally false" means that no variety with rank and containing

an algebra with more than one element could have a canonical algebra or (via

extension of the definition) a canonical set of algebras. Reservation 2 concerns one

algebra, the empty algebra, and does not affect varieties such as groups which have

no empty algebra. At worse we add it, to get a 2-element canonical set.

Now as the abstract has already warned you, to understand this paper thoroughly

requires a knowledge of basic functorial semantics. The source paper is [12]; a more

readable reference is [10], which is also a pioneering study of canonicalness begin-

ning with A (the problem: find °V). Some such knowledge will henceforth be

assumed—but not in every line.

A subcategory & of a variety Tis called exemplary in Tif it lies in no proper full

subvariety (subobject in the category of varieties); dominant if it lies in no proper

subvariety. We will be interested only in full subcategories 6E (though we may have

ácScT where © is not full); the set of objects of full & C T may be called

exemplary, dominant, or canonical in T if & is so. The definition of a canonical

subcategory unfortunately takes us into " tractability", treated sketchily by Linton

[12] and usually avoided since. Cheer up, we can avoid it too. Let us call a category

over sets, i.e. a category Q together with a functor U: G -» S, a datum. Tractability is

a certain property of data, defined in [12], which all our data have; it suffices to

observe that G -» S is tractable if (1) G is small, or (2) G is a variety and the functor

G -» S is the forgetful functor. Now recall further [12] that there are two categories

(bigger than the universe: one uses a set theory with universes) which we may call

Theo and Tract, Theo consisting of varietal theories and interpretations between

them and Tract of tractable data G -» § and their morphisms (functors G -» G'

making a commutative triangle over S). There are adjoint functors Sem: Theo -*

Tract, Str: Tract -> Theo (SemT is the category of T-algebras; Str 6 generalizes,

from a category 6E on one object with underlying set A, the varietal theory of all

n-ary operations A" -> A commuting with morphisms). Then we may define a

tractable subdatum G -» S of a variety T-* S to be canonical in Tif Str takes the

insertion i: G -» Tto an isomorphism of theories.

Examples. Groups form a full proper subvariety of semigroups, or of monoids; so

no group or category of groups is exemplary in monoids or in semigroups. Monoids
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form a subvariety of semigroups, but not a full one. Indeed one can show that a free

monoid on two generators is an exemplary semigroup.

Rings do not form a subvariety of groups, since two different rings may have (the

same set of elements and) exactly the same underlying additive group. The crucial

difference is that while the entire structure of a monoid (or group) is determined by

its underlying semigroup, the structure of a ring is not determined by its additive

group. That is the difference in semantic terms; in suitable infinitary languages,

there is a syntactic equivalent. If % is a subvariety of a variety T with rank, then

each operation of 6u> is definable in terms of T-operations. (That is "definable", not

"expressible". For instance, the 0-ary operation e of groups is defined y = e iff

yy = y. The equation yy = y has no such effect in general semigroups, but the

definition need only work in groups.) This particular theorem will not be needed

below. It is given, in different language, by Hodges and Shelah [3, Corollary 10]. We

shall want a syntactic description of full subvarieties f cT. The classical finitary

result, due to H. J. Keisler and more general, is in our terms that % is a full

subvariety if and only if each operation of 6aT can be defined from T-operations by

means of conjunction, disjunction and existential quantifiers. One calls such defini-

tions positive existential. The infinitary generalization (without assuming a rank) and

some sharper versions are in [8]. In fact we shall want a further sharpening, Theorem

1 below, which makes essential use of the infinitary language to eliminate all

quantifiers. (Warm thanks to Stephen Schanuel for insisting on wondering if all

those existences could be accidental.)

(Still examples). In the variety of distributive lattices with 0 and 1, the lattice

A = {0,1} is generic; but it is not exemplary since it lies in the full subvariety of

Boolean algebras. In semilattices with 0 and 1, A is exemplary (proof near the end of

§1) but not dominant. For, lattices form a subvariety of semilattices, since the

semilattice structure determines the order which determines the whole structure of a

lattice. Turn now and consider A as a rather trivial algebra, a double-pointed set (the

theory has two constants, 0 and 1, nothing more). We can show (§1) that it is a

dominant one; but it is not canonical since A has no endomorphisms except the

identity, but not all functions A" -> A are constant.

Returning to the results of this paper: every variety with rank has a dominant pair

of algebras, of which one is empty (omit it if nonexistent).

The last topic here investigated is dominance and exemplariness for modules over

a ring R. First, they are the same problem: every exemplary subcategory of a

category of modules is dominant. Then we ask when a free module on one generator,

i.e. the ring R itself, is dominant. The basic counterexample: a ring A[[t]] of all

formal power series in a central indeterminate /, over any nonsingleton ring A, is a

nondominant yl[[?]]-module, say not self-dominant. On the other hand, any non-

self-dominant ring R must resemble a power series ring in having a descending

sequence of right ideals /„ with zero intersection and a sequence of nonzero elements

c„ of /„ such that all infinite series 2 c,x, (x, E R) have sums i in the sense that for

each n, s — cxxx — • • • — cnxn E In+X. In particular, countable rings are self-domi-

nant.
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I am indebted to John Dauns and Stephen Schanuel for discussions of some of

this material.

1. Generalities. A datum is precisely a functor U: G -* S from its category G to the

category S of sets, but it will usually be called simply G. The varietal theory Str G is

determined by specifying its /i-ary operations for each cardinal n, and the rules for

composing operations; and they are as follows. The w-ary operations are the natural

transformations U" -» U. Of course the formalities [12] involve indices which we can

be casual about. To compose w-ary w with n operations va in (some of) m variables,

write each va as an w-ary operation Um -> U; then the ordered «-tuple {va} gives a

natural transformation Um -» U", which one follows with w: U" -» U.

We must refer, in treating one of the examples, to Linton's equational theories

which are bigger than varietal theories [12] (for instance, the theory of complete

Boolean algebras). Their virtue (for our purpose) is that they have finite colimits. We

get back to varietal theories quickly by means of the observation that an equational

theory which has a generic algebra A is varietal. (That is, it has only a set of w-ary

operations, no larger than the set of functions A" -» A, for each n.)

For a general small subcategory & of a varietal category ST, the insertion /:

6E -» ST induces a morphism of theories Str/: T^Strfc? with which there are

associated three kinds of "image". 6E is generic if and only if interpreting the formal

operations of T as operations on the underlying sets of objects of 6Ü is one-to-one;

this means precisely that Str/ is monic. (And it depends only on the objects of 6E,

not on the morphisms.) Equivalently, of course: Str / factors across no proper strict

quotient of T, but has image T.

It is convenient to take "dominant" before "exemplary". & -> ST is dominant

when it does not factor through a tripleable proper subcategory. Those subcategories

are given [3] by morphisms T -* T' such that every operation a(x,, x2,...) of T' is

formally definable in terms of operations of T; that is, it is a theorem of T' that

y = a(x,, x2,...) if and only if $, where $ is a properly formed statement in the

language of the image of T -» T' (set-theoretic image). These are the epimorphisms

of varietal theories. The universal such factorization is given by the stable dominion

T* of Str /': T -> Str 6E, the largest subtheory of Str & into which T goes epically. (For

proof of existence, the reader has the choice of avoiding the Hodges-Shelah con-

struction [3] and using the usual transfinite downward construction, or excavation,

of stable dominions [6]; or of using [3] and the trivial lemma: T -* T* is epic if T* is

generated by subtheories into which T goes epically.)

Applying this, /': 6E — ST is dominant if and only if the stable dominion of Str / is

T, which is to say that Str i is an extremal monomorphism.

For full tripleable subcategories, everything is the same except that the definitions

of operations must be positive existential, i.e. constructed without use of negation or

universal quantifiers [8]. These epics T -* T' may reasonably be called positive epics,

and T' a positive quotient of T. Then i: 6? -» ST is exemplary if and only if Str i

factors across no positive proper quotient of T (T is, as it were, the positive image).

Theorem 1. A morphism of varietal theories F: T -» T' is positive epic if and only if

every operation ofT' belongs to a set S of operations Wjixx,x2,...)ofT' such that the
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conjunction of'yj — w,(x,, x2,... )" for all Wj E S is equivalent, as a theorem ofT, to

a conjunction of FiT)-equations "çfc((ac,),(^)) = ^((x,), (^))".

Proof. "If is trivial. For the converse, any T'-operation w((x,),G/) belongs to a

free T'-algebra S0 on generators x¡. If w is one of the variables x,, "y- = x," is the

required single equation. Otherwise let 5 be S0 minus the generators and let 2 be the

set of all £(T)-equations in variables x, (/' E /) and y¡ E S that are true in S0. For

any values xf, y* for these variables in a T'-algebra A, they simultaneously satisfy 2

if and only if the function *: S0 -* A which they define underlies a morphism from

Sem £(S0) to Sem FÍA). Sem £ being full, * underlies a morphism of T'-algebras

just in this case; and that is in turn equivalent toy* = w-(xf, xf,...) for ally.

Note, A and B must be T'-algebras; nothing was said about expressing the laws of

T' in terms of £(T). Of course it can be done if complexity of sentences is unlimited,

but I do not know how reasonably.

Returning to "generic", one has Birkhoffs semantic construction of an image:

6£ C ST is generic if and only if every object of ST is a strict quotient of a subobject

of a product of objects of (£.

A sufficient condition for dominance of 6B C §>T (for use in Theorem 3) is that the

smallest subcategory G containing 6B and closed under limits, the limit closure of &,

contains all free algebras and their morphisms; for a tripleable subcategory is closed

under limits and also under i/-split coequalizers (PTT, see e.g. [13, p. 147]), which

yields from free algebras, all algebras. I do not know if this sufficient condition is

necessary. Of course, if the full limit closure contains the free algebras, & is

exemplary.

It can do no harm to spell out: G C ^ is closed under limits. This means that

every limit £ in ty of a diagram in G is in G and is a limit in G of that diagram. This

guarantees many morphisms. For instance, every automorphism / of an object X of

G; for the singleton diagram X has/: X -> X as one of its limits.

Finally, /': 6B -» ST canonical means that Str i: T -> Str 6£ is invertible. The theory T

is nearly the same thing as the full subcategory S"of ST on the free algebras. (Slightly

differing conventions are in use [12, 14]; T is 9" with a functor § -» 9" giving free

generators.) The functor carrying Str i is the restriction to 9" of the right subregular

representation of ST over &, and thus Str /' is invertible if and only if & is right

adequate for free algebras [4].

The implications canonical -* dominant -» exemplary -» generic do not run back-

wards, in general. Undoubtedly there exist broad conditions for inverting some of

them. But not finiteness conditions; the examples in the Introduction show that,

when we complete the justification of what was said there. (1) The two-element

semilattice A is exemplary. For every semilattice is isomorphic with a semilattice of

sets, i.e. embeddable in a power Am; and every subsemilattice of Am is the equalizer

of two morphisms into an A". Thus the full limit closure is everything, A is

exemplary. (2) A is a dominant double-pointed set. First, every epimorphism D -* T

from the theory D of double-pointed sets is surjective; for, suppose the contrary.

Then some free T-algebra B has an element formed from the generators by an

operation not in D, so a larger one C has two such elements. The set C admits a
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different (but isomorphic) T-structure with those two elements exchanged, which

does not change the D-structure. This gives a model M, on the set C, of an

equational theory T + D T. But M is generic in a varietal specialization V. We have

two different morphisms T -» V agreeing on D, a contradiction. Now these epics are

determined; SD has only two proper sub varieties, and neither contains A.

As a matter of fact, we have not touched the bottom of the cardinals, and there is

an unresolved question in that vicinity. At the bottom, if all the operations of a

theory are 0-ary, its generic algebras are dominant, by the argument on D above. I

do not know whether, when all operations are at most unary, exemplary algebras are

dominant. There is some difficulty in finding examples because every epimorphism

of monoids is positive. (This follows from the description of the epimorphisms [6];

the extension to categories, where every bimorphism is positive epic, is explicit in

[7].) However, as we shall see in a moment, a monoid theory (theory of M-sets) can

have a proper quotient with operations of higher arity, and such a quotient need not

be positive. Our example factors through a positive quotient with nonunary opera-

tions; and indeed, the question whether exemplary families of M-sets are dominant

comes down to: Does every proper quotient of a monoid theory factor through a

proper positive quotient?

The example is the theory T of sets A with a bijection m: A X A -» A, a unary

operation d, and a constant o such that for all x, dmio, x) = dmix, o) = o. Its

operations are generated by m, d, o, and the coordinates px, p2 of m~\ Evidently

they are definable over the monoid M generated by px, p2 and d. But since two sets

of power S 0 are equivalent, there is a bijection Z X Z -* Z whose restriction to pairs

in the set N of positive numbers is a bijection upon /V. Defining dx =

min((p,x)2,(p2x)2), N becomes a T-algebra with o — 1, Z a T-algebra with o = 0

and A/ C Z an M-homomorphism which is not T-homomorphic. So M C T is a

nonpositive quotient.

2. Sufficient conditions. Observe that for every category & -» S over finite sets,

there are infinitary operations on the sets of 6B which are preserved by all the

mappings in &. If iFis any ultrafilter on an index set N, an A/-tuple [xv] in a finite

set "converges" to a definite value x, the unique value which is taken on a set of

indices belonging to ÇF. Naming the functor U: & -» S, one checks trivially that

^-convergence gives a natural transformation U" — U. Since there are ultrafilters on

arbitrarily large sets which are not supported by smaller subsets, this shows that a

variety having a canonical set of finite algebras cannot have a rank.

The argument applies as well if the sets X, underlying objects of &, are not finite

but the ultrafilter ÍF on N is such that every function N -» X is constant on some

member of *%: ®s is X-multiplicative. A measurable cardinal is a cardinal n such that a

set N of that size has a nonprincipal ultrafilter that is A'-multiplicative for all smaller

sets X. Evidently:

// every cardinal is less than some measurable cardinal then a nontrivial variety

having a canonical set of algebras cannot have a rank.

On the contrary hypothesis, however, there are some affirmative results. We

should note in passing that there are affirmative results in any case; the compact
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spaces, and the complete atomic Boolean algebras, form perfectly good rankless

varieties having canonical algebras. More: every algebra A in ST is canonical in a

suitable variety %SuA. Perhaps the varieties having canonical algebras are not worse

behaved than the varieties having rank. But rankless varieties are less convenient,

and we drop them.

Theorem 2. IfT is an algebraic i finitary varietal) theory and m is a cardinal not

less than any measurable cardinal nor than the number of&Q-ary operations ofT, then

in ST a free algebra on m generators with iif possible) an empty algebra forms a

canonical set.

Proof. First, existence of an empty algebra £ is equivalent to nonexistence of

0-ary operations in T; and including £ in a subcategory & guarantees that Str & has

no 0-ary operations. For 0 < n < p, the «-ary operations of any varietal theory are

identifiable among thep-ary operations since [n] is a definable retract of [/?]. If there

are 0-ary operations, [0] is also a definable retract of [p]. Hence it suffices to show

that i: 6B -> §T induces a morphism Str i bijective onp-ary operations forp > m.

We may now ignore £ on account of the uniqueness of functions with empty

domains. Let £ be a free algebra on a set M = {x^} of m generators, and S D M its

underlying set. Note that S has only m elements (since it is a union of free algebras

of at most m elements generated by the m finite subsets of M). Since m is infinite,

Str/' is injective. It remains to show that every function A: Sp -> S commuting with

all endomorphisms is an operation of T.

We shall study mainly the restriction of A to Mp. Indeed, once we have a finite set

of indices a, and an operation w of T such that A((wa)) = w(i/a|, uai,...) for each

(wa) E Mp, the same holds for every (t/a) in Sp. For there are only m different

possible values for ua, so there exist (t>a) in Mp and an endomorphism e of £

satisfying e(va) = «„foralla; hence A((hJ) = e(w(va¡,...)) = w(ua¡,...).

Recall that the set of generators on which an element / of the free finitary algebra

£ depends is uniquely determined unless / is pseudoconstant, i.e. generated by each

of two disjoint subsets £ J of M. (If / is generated by each of K, L C M then it is

generated by any nonempty set H D K D £, for one can map K into £ by a

function fixing all points of £; thus £ has an endomorphism which leaves / fixed but

also takes it into the subalgebra generated by H.) We are interested in the numbers

of generators, say n(«), on which values A(m) of A depend—and of course in which

generators. Call «(«) zero if A(m) is pseudoconstant.

For u in Mp, A(w) depends at most on the coordinates of u, since endomorphisms

fixing u fix A(w). Moreover, since A commutes with the automorphisms induced by

permutations of M, n is constant on orbits under that group. In more detail, let P be

a p-element index set, coding the power set Mp as Mp; to each partition % of P into

at most m subsets Ua there is associated a finite subset S(%) such that for any

u E Mp whose fibers are the elements of %, A(w) depends on just those coordinates

u„ for which m belongs to an element of S(%). And we can construct u* from u by

identifying all the unused ua; the fibers of u* are the «(«) elements of S^ÎL) and the

complement of their union, and A(«*) = A(m).
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If a partition T refines %., then each element of S(%) contains an element of

S(T), for there are associated elements v, u of Mp and an endomorphism e with

eiVn) = U7T f°r a^l "■> S0 MM) = einiv))-

Call an element U of a finite partition % of £ unbounded in % if there are

partitions (and therefore there are finite partitions) T containing % — {U} for which

5(T) is arbitrarily large; otherwise U is bounded in %. If Uis bounded in %, S^T)

having the maximum size k on partitions Td 6ll— {U}, consider some Tattaining

the maximum value and let Vx,...,Vr be the elements of 5(T) which are subsets of

U. If we further refine Tby carving some Vi into m or fewer parts Vy, making a new

partition sliS, Si6^) has at least k elements since <5u><cV, but at most k since

<¥ D %- {t/}; looking more closely, S(<¥) consists of S(T) with just one VtJ

replacing V¡. The subsets VtJ of ^ which are in Si%), % = (T- {FJ) U {^, ^ -

Vjj}, form an w-multiplicative ultrafilter. It must be principal. We conclude that

Vx,...,Vr contain points px,...,pr such that the refinement % of Twhich replaces

each V¡ with {p,} and its relative complement has Si%) consisting of the singletons

{p,} and k - r elements of %. Therefore S(<¥*) is the same, where <¥* = (%-

{U})U{{Px},...,{Pr},U-{px,...,pr}}.

The proof is now reduced to showing that « is a bounded function, i.e. that £ is

bounded in {£}. For that will give us a partition %* into r singletons and the rest of

£, with SC5!!;*) consisting of the singletons, and each refinement 9C of %* having

only r elements in S(%), one in each singleton.

Let us prove (*): If U E % is unbounded in the finite partition %, there is a

refinement ty consisting of % — {[/} and finitely many subsets of U of which at least

one is unbounded in % and a different one belongs to S(^). At least (from the

preceding) there is a refinement T consisting of % — {[/} and finitely many more

elements V¡ of which at least two belong to S("{). Suppose each Vi bounded in T.

Let us take first the case of two V¡. Since Vx is bounded in T there exists %*, which

is Twith Vx replaced by some singletons in Si6^*) and the rest £ of Vx, as above.

Form %** from öili* by uniting R with V2; via commuting with endomorphisms,

SCW**) is Si^uj*) with R I) V2 replacing V2. In this case, since U is unbounded in

l,ÄU V2 cannot be bounded in <¥**.

Finally, if we have is + 1) V/s (each bounded in T), and the case of only s of

them has been settled, observe that we may assume each V¡ is in S(T). But again,

since Vx is bounded in T, we get some singletons in Vx with finite union a as before;

and in the partition (%- {£}) U {[/- a) U ((x): x E a), U - a cannot be

bounded. But Í/— a cuts up into fewer ^'s, namely R U V2,V3,.. .,VS+X; if this

partition is 2, all the sets just listed are in Si%). So (*) is proved.

If £ were unbounded in {£}, this would give us an infinite sequence of succes-

sively finer finite partitions Glik, each containing all but one element of the preceding

with the exceptional elements nested and with S(%*) increasing in size. Such a

sequence has a countable common refinement T. Since m > N0, Tmust have a finite

subset S(T); but Si"{) also must contain all but one element of each of the

increasingly large sets S( <?!,*), a contradiction.
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Let us notice some related previous results. In vector spaces over a division ring D,

an m-dimensional one is canonical if no measurable cardinal exceeds m [5]. For

abelian groups, if S 0 is the only measurable cardinal, m need only be 2. Abelian

groups are, of course, Z-modules; and this result of Los has been extended by

Gerstner, Kaup, and Weidner [2] to some other rings sufficiently like Z. According

to C. Jensen [9, p. 87] one has

Theorem. If there are no measurable cardinals, then R2 is a canonical R-module, for

every commutative principal ideal ring R having infinitely many maximal ideals.

The theorem is expressed a little differently, referring to homomorphisms Rp -> R

instead of operations iR2)p -» R2. It is easy to see the equivalence of the two

expressions. The use of £2 guarantees that an operation is homomorphic, since it

commutes with the endomorphism (x, y) -» (x 4- y, 0).

Notice also a complex of related results [1, especially 3.1] of Ehrenfeucht,

Fajtlowicz and Mycielski. In [1] too, the subject is homomorphisms; but to commute

with the set £ of endomorphisms is precisely to be homomorphic with respect to an

obvious algebra structure. Indeed I was forced to improve Theorem 2 because the

referee showed that the weaker original version followed rather easily from [1].

Before stating the next result we note that for infinitary theories, while the set of

variables on which an operation depends is no longer precisely determined, the

number of them is—since cardinals are well ordered. Call this number, the minimum

number of variables in terms of which an operation a can be expressed, the actual

arity of a.

Theorem 3. If T is a varietal theory having rank and m is an infinite cardinal

greater than the actual arity of every operation of T, then in ST a free algebra on m

generators with (//possible) an empty algebra forms a dominant set.

Proof. As we saw in §1, & C ST is dominant if the full subcategory on the free

algebras is in the limit closure of 6E. We have the free algebra on 0 generators, in & if

it is empty and as a retract if it is not empty. Having the free algebra £ on m

generators, we need to get every larger free algebra G and every morphism A: G -» £.

Then, since every (free) algebra H that we have (with a possible empty exception) is

obtained by iterated construction of limits from £, we shall have every morphism

G -» H since we have its coordinates G -> £.

Given G free on p > m generators and A: G -> F, take a free algebra G' on a

disjoint sum £ U M of a p-element set £ and the set M of free generators of £

Construct an inverse mapping system indexed by the »/-element or smaller subsets £

of £, the £th object XT being the subalgebra of G' generated by £ U M. For U D £,

Xu is retracted on its summand XT by sending the generators in U — T to the

summand £ by means of A. Evidently G' maps to the system , going to XT by the

retraction which on £ — £ is given by A.

This exhibits G' as limit of the XT (all of which are isomorphic with £). For,

consider any thread {xr}. I claim that some summand XT. contains all xT. If this

were false then we could construct an expanding sequence of m sets Tx with xTx not
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in the join of the previous XT. Let U be the union of all Tx. xv E Xv is generated by

/ elements of U U M for some actual arity I < m. But the sequence {Tx} has an

initial segment (not necessarily proper) whose length is the regular cardinal /+ . Let

V be its union. The retraction from Xv to Xv takes xv to xv in the subalgebra

generated by M and at most / elements of V; hence xv is in XT for some X < l+ ,

and so is xT , a contradiction, proving the claim. Now {xT} is the image of

xT, E G'. For if £ D £*, xT E XT», and XT -» XT, is a retraction; xT = xT,. Since

those £ are cofinal, this determines the limit.

Finally, G is embeddable in G' as the limit of the diagram consisting of G' and all

its automorphisms fixing P. For each element of G' is generated by P and a set £ of

less than m elements of M, and when fixed under an automorphism taking £ into

M — £, it is generated by P. (This uses the fact that equalities in G' are laws of T; in

effect, if a(x, y) = a(x, z) by law, then in particular it is a(x, x).) Composing with

the coordinate map to X0, we have A.

Corollary. Dominance and exemplariness are not universe-dependent; that is, if a

category â of models of a varietal theory with rank in a universe % is dominant, or

exemplary, it remains so in any larger universe.

For the smallest containing tripleable subcategory (tripleable full subcategory)

contains the algebras of Theorem 3 and hence all algebras.

Genericity obviously is not universe-dependent. As we have seen, canonicalness is.

One may naturally ask whether Theorem 3 holds for finite cardinals m > 2. At the

first case, m = 2, I do not know. Here is a little. First, a two-element set T is

dominant as follows. Any set S is embeddable in a power £ of £; moreover, it can

be embedded so that P — S has more than one point, making 5 an equalizer of two

automorphisms of P. Any map S -» T is a composite S -> P X £ -» T of an

embedding as equalizer and a coordinate projection. This argument extends to a free

G-set on two generators for any group G. I do not know if the result extends to

M-sets where M is a three-element chain.

Turning to modules, we have

Lemma 1. Every finite-limit-closed subcategory of an abelian category is full; so every

exemplary subcategory of a category of modules is dominant.

Proof. If A is in a finite-limit-closed subcategory of abelian G, so is A: A -» A © A.

So is the automorphism e of A ® A taking (x, y) to (x, y — x). And so is the second

coordinate of eA, which is 0: A -* A. Hence the equalizer 0 -* A of 0 and 1 : A -* A.

Since the object 0 is a limit of the empty diagram, we also have morphisms B -» 0

and 0: B -» A. Finally, if we have the objects A and B, and A: A -> B is a morphism,

we get A by injecting A into A © B, applying the automorphism (x, y) -» (x, y +

A(x)), and projecting.

This is a cheering lemma, but it does not really affect the work to follow; in any

case one would work on exemplariness first, since it is easier. Still it requires either

handling blocks of operations (from Theorem 1) or tracing positive existential

definitions through a number of theories. The actual work done below involves only
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a first theory Str 6? and a wave at the last one ("The necessary and sufficient

condition is..."); so the description of the whole list will be informal, and we begin

with an amusing irrelevancy. All these theories are abstractions of the facts in the

ring R. What about positive existential definitions valid in fact in £? Lots. For

R = Z2, multiplication and lattice join (x + y + xy) are positively existentially

definable over Ä-module theory. For instance, multiplication:;; = x,x2iffx, = v = 0

or x2 = y = 0 or x, + y — x2 + y = 0.

Our question is, when is the ring R a dominant £-module, or self-dominantl By

Lemma 1 this means merely that it is an exemplary £-module. We shall use £2

because Str£2 is smaller, and evidently it lies in the same tripleable subcategories as

R. Let RT denote the theory of £-modules (since comodules, "right modules",

appear too). The insertion /' of £2 (over sets, and with its endomorphisms) in the

module category gives us Str/': R\T -* Str£2; we want the stable dominion Dx. By

Lemma 1 it is a positive quotient of RT. Therefore it is contained in the positive

dominion Px of Str /', the subtheory of Str£2 on those operations definable as in [7]

over Str iiRT). And one can continue; £' is trivially contained in the dominion £»',

£x C Dx, but £°° = £»°°. (I do not know if there is an ordinal bound to the length of

this iteration for rings.)

Str£2 is identified by

Lemma 2. For each cardinal n, there is a bijection between natural n-ary operations a

on R2 and right R-linear morphisms a*: R" -» R; a*((x,),en) is the first coordinate of

«(((*,.0))/en), andaiHx,, y,))) is (a*((x,)), a*«*))).

The proof is routine calculation.

Call an w-ary relation SCR" projectively definable if there is a system 2 of linear

equations Xj((y¡)iea, zk) = 0 such that (y¡) E S if and only if 2 is solvable. Positive

dominions over a theory of modules are given ' nearly' by those operations that have

projectively definable graphs; but the definability must be not only true for values of

the variables in R, but true in all models of the codomain theory, here Str£2. There

exists machinery, by the way, for transporting the notion of projectively definable

relation to models of Str£2, but we have no present use for it. Call an operation

R" -» R (right £-linear) projectively definable if its graph is so. Call it stably definable

if it belongs to the stable dominion of Str /'. Equivalently (Theorem 1 and Lemma 1)

it belongs to a family of operations wy((x,)) jointly definable as in Theorem 1.

Lemma 3. A ring R is self-dominant if and only if every stably definable X0-ary

operation on R is finitary; therefore, if every projectively definable X0-ary operation on

R is finitary.

Proof. If R is self-dominant, £2 is a dominant £-module and the stable dominion

of Str/': RT -^ Str£2 is RT; every stably definable operation (£2)" ^ R2 is finitary

for all n, and hence so is every stably definable operation Rm -* R. Conversely, if

every stably definable S0-ary operation on R is finitary, then any positive quotient

of RT in Str£2 has the same w-ary operations for n < S0, and the corresponding

tripleable subcategory contains Ra. Since Ru is dominant, this is the category of all

modules and the proof is complete.
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Theorem 4. For a ring R to fail to be self-dominant it is necessary that R be

uncountable and not right artinian; indeed, there must be a descending sequence of right

ideals In with intersection 0 and a sequence of nonzero elements c„ of In such that there

is a linear operation a: R" -* R satisfying, for all (x,) £ Ru, for all n, a(xx, x2,... ) —

c,x, — • • • ~cnxn E I„+X. If this condition holds with projectively definable right ideals

In then the graph of a is projectively definable.

Proof. First, given this condition and definitions of u E In by the existence of

(znk) satisfying equations Xjiu,iznk)) = 0, then>> = a(x,, x2,...) iff for all n, for all

h

Xj(y-C\X\-Cn-l*n-lÁz«k)) =0.

For the partial converse, let ß be a definable nonfinitary operation from R" to R

and let {Xj} be a family of finitary linear operations on R" X R X Rp defining ß.

Let Tn be the subcomodule of Ra consisting of all sequences (x,) with x, = x2 =

• • • = xn_, = 0, and Hn = /S(£„). The Hn are subcomodules of R, i.e. right ideals,

and they are nonstrictly decreasing. Suppose r ¥^ 0 to be in all Hn. Since /3(0,0,...)

= 0 ¥= r, the point (0,0,... ; r ) E R" X R is not in the projected kernel of every Xj.

Thus there is a finite subset £of w such that if x, = 0 for all /' E £, /3(x,, x2,...) ¥= r.

But this contradicts /* E Pi Hn.

Let c° = ßie") where e" E R" has terms e? = 8ni. Since e" E Tn, c° E Hn. We are

practically done, for each x E R" is x1 + x2 with x) = 0 for /' > n, and x,2 = 0 for

/' < n, yS(a') = c°x, + • • • + c°x„, and ßix2) E Hn+X. Not all c° need be nonzero,

but infinitely many must. (If only finitely many, let ß' be the corresponding finitary

operation, ß — ß' must not vanish, so there is (x,) with ß((x,)) not the finite sum

b = ß'ÜXj)). As before, there is finite £ C co such that if yi — x, for /' E £ then

ßiiy,)) ^ b; but such a sequence ( v,) can be constructed as a finite right linear

combination of e's, a contradiction.) So there is a subsequence (c° ) = (cOT), all

nonzero. Therefore all fail to belong to C\Hn, and we can choose this subsequence

so that cm E H„n+l- Then let 5: £w -* Ru take (x,) to (y¡) where y„ = Xj and j, = 0

otherwise; let a = ßs. The right ideals a(£m) = Im are descending, contained in Hm,

and cm is in Im but not in Im+X. Therefore on the uncountable set {0,1}" C R", a is

one-to-one; if two zero-one sequences, (x;), (yt), first differ at the «th term, then

a((x,)) and «((j,)) differ modulo In+X.

Some Remarks. A "one-line" projective definition of a right ideal has the form

y E I iff a0y + 2 akzk — 0 is solvable, which is iff a0y belongs to the finitely

generated ideal generated by {ak}. Projectively definable ideals include all intersec-

tions of these ideals; but of course they include more, since one parameter zk may

appear in several equations.

Note the case of an annihilator ideal I; y E I iff ay = 0. Since no parameters zk

occur, an operation definable by means of annihilator ideals is stably definable. In

power series over any ring in commuting variables tx, t2,...,ux,u2,..., subject to

tjUj = 0 for /' >j, the operation (x,) -» 2 t,x¡ is so definable.
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Of course the simplest case is power series in one variable t; the operation a:

(x,) i-» 2 t'~lx¡ has remainders in the principal ideals generated by powers of t, and

the parameter values zk (in a(x,, x2,...) — xx — tx2 — ■ ■ ■ —tk~xxk = tkzk) are

aixk+x, xk+2,...),so ais stably definable.

One step further, consider first a ring Rx of power series in commuting variables

t¡, Uj, v¡, wi (/' E w) subject to tfu¡ = v¡Wj for /' > j. The operation a: (x,) h» 2 tixi is

projectively definable by means of the ideals Hn = [y: uny E wnRx}. The re-

mainders rn2{?,x,: /' > n] satisfy, to be precise, unrn = »vn2{u,x;: i > n); hence a

and ß: (x,) k» 2 v,xt are both stably definable. The particular ring Rx has more

simply stably definable infinitary operations, but it seems likely that those can be

killed off by using a suitable subring. The subring £2 of power series in which

finitely many variables generate only finitely many nonzero terms may do it, though

it is not the smallest subring closed under a and ß.

One last step; instead of v¡ (/' E «), use variables vj, with <(w- = vfwj for /' >j (to

begin with). Then the parameters for the definition of a are given by many

operations ß" which are not, yet, definable. But just as u's, u's and w's make a

definable, so some further variables and relations can make the ß" definable.

Evidently running this construction out an infinite sequence will stabilize all the

definitions. What is missing in this sketch is assurance that the operations have no

simpler stable definitions.

Example. Relevance of the number of operations in Theorem 2.

Let G be a group of cardinal m > S0. Consider the variety of pointed G-sets

(pointed, to avoid the annoyance of an empty algebra). If £ is free on n < m

generators, then as a G-set it is just a coproduct of (n + 1) copies of G; for infinite

n, each endomorphism of £is at most «-to-one. Therefore we may decompose £m as

A U B where A is the set of m-tuples having at most n different coordinates and B is

the nonempty remainder. For each endomorphism e of £, emiA) C A and em(£) C

B. Then define A: £m -» £, A(x) to be the first coordinate of x for x E A, the second

coordinate for x E B. A commutes with endomorphisms; £ is not canonical.

Example. A free algebra onX0 generators, N0 being the greatest actual arity, which

is not exemplary.

For this, start with the rankless varietal theory T of complete atomic Boolean

algebras. Let T0 be the subtheory on the operations of countable actual arity. The

free algebra A on S0 generators is still the algebra of subsets of a set of power c, and

every T0-endomorphism of it is a T-endomorphism. By the way, if there is no

measurable cardinal, ST is a tripleable full subcategory of ST° containing A. But

without assumptions, one can write a positive existential definition of the join of N,

elements j- over the theory T0, using only S0 additional variables. Identify the set J

of indices of the y, with a proper subset of the set of atoms of A. Every element of A

is a word in the generators x,, x2,...; in particular, {j:j < k) isaworda(x,, x2,...),

and the join y isa word a*(x,, x2,...). Thenz = Vy(in ,4) if and only if there exist

/,, t2,..., such that each join of y} (j < k) is ak(tx, t2,...) and z is a*(i,, t2,...). For

there is a unique endomorphism of A taking all x, to i,; it takes the atoms /' to

y¡ ~ V {ym'- m <J}^ and h takes J to z.
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