Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Generic algebras


Author: John Isbell
Journal: Trans. Amer. Math. Soc. 275 (1983), 497-510
MSC: Primary 18C05; Secondary 08B99
DOI: https://doi.org/10.1090/S0002-9947-1983-0682715-8
Erratum: Trans. Amer. Math. Soc. 295 (1986), 429.
MathSciNet review: 682715
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The familiar (merely) generic algebras in a variety $ \mathcal{V}$ are those which separate all the different operations of $ \mathcal{V}$, or equivalently lie in no proper Birkhoff subcategory. Stronger notions are considered, the strongest being canonicalness of a (small) subcategory $ \mathcal{A}$ of $ \mathcal{V}$, defined: the structure functor takes inclusion $ \mathcal{A} \subset \mathcal{V}$ to an isomorphism of varietal theories. Intermediate are dominance and exemplariness: lying in no proper varietal subcategory, respectively full subcategory. It is shown that, modulo measurable cardinals, every finitary variety has a canonical set (subcategory) of one or two algebras, the possible second one being the empty algebra. Without reservation, every variety with rank has a dominant set of one or two algebras (the second as before). Finally, in modules over a ring $ R$, the generic module $ R$ is shown to be (a) dominant if exemplary, and (b) dominant if $ R$ is countable or right artinian. However, power series rings $ R$ and some others are not dominant $ R$-modules.


References [Enhancements On Off] (What's this?)

  • [1] A. Ehrenfeucht, S. Fajtlowicz and J. Mycielski, Homomorphisms of direct powers of algebras, Fund. Math. 103 (1979), 189-203. MR 547553 (81b:08002)
  • [2] O. Gerstner, L. Kaup and J. G. Weidner, Whitehead-Moduln abzählbaren Ranges über Hauptidealringen, Arch. Math. (Basel) 20 (1969), 503-514. MR 0252379 (40:5600)
  • [3] W. Hodges and S. Shelah, Infinite games and reduced products, Ann. Math. Logic 20 (1981), 77-108. MR 611395 (82f:03025)
  • [4] J. Isbell, Adequate subcategories, Illinois J. Math. 4 (1960), 541-552. MR 0175954 (31:230)
  • [5] -, Subobjects, adequacy, completeness and categories of algebras, Rozprawy Mat., no. 36, (1964), 33 pp. MR 0163939 (29:1238)
  • [6] -, Epimorphisms and dominions. (Proc. Conf. Categorical Algebra, La Jolla, 1965), Springer-Verlag, Berlin, Heidelberg and New York, 1966, pp. 232-246. MR 0209202 (35:105a)
  • [7] -, Epimorphisms and dominions. III, Amer. J. Math. 90 (1968), 1025-1030. MR 0237596 (38:5877)
  • [8] -, Functorial implicit operations, Israel J. Math. 15 (1973), 185-188. MR 0323671 (48:2027)
  • [9] C. Jensen, Les foncteurs derivés de $ \underleftarrow {\lim }$ et leurs applications en théorie des modules, Lecture Notes in Math., vol. 254, Springer-Verlag, Berlin, Heidelberg and New York, 1972. MR 0407091 (53:10874)
  • [10] J. Kennison and D. Gildenhuys, Equational completion, model-induced triples and pro-objects, J. Pure Appl. Algebra 1 (1971), 317-346. MR 0306289 (46:5415)
  • [11] F. W. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 869-872. MR 0158921 (28:2143)
  • [12] F. E. Linton, Some aspects of equational categories (Proc. Conf. Categorical Algebra, La Jolla, 1965), Springer-Verlag, Berlin, Heidelberg and New York, 1966, pp. 84-94. MR 0209335 (35:233)
  • [13] S. Mac Lane, Categories for the working mathematician, Springer-Verlag, Berlin, 1971. MR 0354798 (50:7275)
  • [14] E. G. Manes, Algebraic theories, Springer-Verlag, Berlin, 1976. MR 0419557 (54:7578)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 18C05, 08B99

Retrieve articles in all journals with MSC: 18C05, 08B99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0682715-8
Keywords: Functorial semantics, variety, epimorphism, definable
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society