Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

A geometric interpretation of the Chern classes


Author: R. Sivera Villanueva
Journal: Trans. Amer. Math. Soc. 276 (1983), 193-200
MSC: Primary 57R20; Secondary 55P47
MathSciNet review: 684502
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {f_\xi}: M \to BU$ be a classifying map of the stable complex bundle $ \xi $ over the weakly complex manifold $ M$. If $ \tau $ is the stable right homotopical inverse of the infinite loop spaces map $ \eta :QBU(1) \to BU$, we define $ f_\xi ^{\prime} = \tau \cdot {f_\xi}$ and we prove that the Chern classes $ {c_k}(\xi )$ are $ f_\xi^{\prime\ast}(h_k^{\ast}(t_k))$, where $ {h_k}$ is given by the stable splitting of $ QBU(1)$ and $ {t_k}$ is the Thom class of the bundle $ {\gamma ^{(k)}} = E{\Sigma _k}{X_{{\Sigma _k}}}{\gamma ^k}$. Also, we associate to $ f^{\prime}$ an immersion $ g:N \to M$ and we prove that $ {c_k}(\xi )$ is the dual of the image of the fundamental class of the $ k$-tuple points manifold of the immersion $ g,g_k^{\ast}([{N_k}])$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57R20, 55P47

Retrieve articles in all journals with MSC: 57R20, 55P47


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1983-0684502-3
PII: S 0002-9947(1983)0684502-3
Keywords: Stable complex vector bundle, Chern classes, infinite loop space, cobordism of immersions, $ k$-tuple points
Article copyright: © Copyright 1983 American Mathematical Society