A GEOMETRIC INTERPRETATION OF THE CHERN CLASSES

BY

RAFAEL SIVERA

Abstract. Let $f: M \to BU$ be a classifying map of the stable complex bundle ξ over the weakly complex manifold M. If τ is the stable right homotopical inverse of the infinite loop spaces map $\eta: QBU(1) \to BU$, we define $f'_\xi = \tau \circ f$ and we prove that the Chern classes $c_k(\xi)$ are $f'_{\xi*}(h^*_k(t_k))$, where h_k is given by the stable splitting of $QBU(1)$ and t_k is the Thom class of the bundle $\gamma^k = E_1 \wedge \gamma^k$. Also, we associate to f' an immersion $g: N \to M$ and we prove that $c_k(\xi)$ is the dual of the image of the fundamental class of the k-tuple points manifold of the immersion g, $g^*([N_k])$.

1. Introduction. In this paper, we give a geometric interpretation of the Chern classes of a stable complex vector bundle ξ over a weakly complex manifold M. In the second section we define characteristic classes \hat{c}_k in $H^{2k}(BU; \mathbb{Z})$ using the weak homotopy equivalence between $QBU(1)$ and $CBU(1)$ for an appropriate coefficient system \mathbb{C} got in [9, 4], the stable splitting of CX given in [4] and the stable map $\tau: BU \to QBU(1)$ defined in [1, 15 and 16]. This section is finished by proving that \hat{c}_k are the Chern classes using the computations of the homology of infinite loop spaces in [3, 6 and 11]. In the third section, if $f: M \to BU$ is a classifying map of the bundle ξ, we associate an immersion $f: N \to M$ to the composition $t'\circ f: M \to QBU(1)$ following [7]. Then, we prove that $\hat{c}_k(\xi)$ is the Poincaré dual of the fundamental class of the k-tuple points manifold of the immersion f. A crucial step is the extension of f to an immersion in "good position" of the normal bundle. The Appendix contains the proof of the existence and essential uniqueness of such extensions.

The research was done during my stay at the University of Warwick and it is part of my Ph. D. Thesis.

I would like to thank my supervisor B. J. Sanderson for his constant help and encouragement.

2. A new definition of the Chern classes. In this paragraph we define classes $\hat{c}_k \in H^{2k}(BU; \mathbb{Z})$ and we prove that they are the Chern classes.

To define \hat{c}_k let us recall some constructions of infinite loop space theory.

Let \mathbb{C} be a coefficient system as defined in [4]. The universal \mathbb{C}-space associated to some space X is defined as the quotient space

$$CX = \frac{\coprod \mathbb{C}_n \times X^n}{\sim}$$

Received by the editors January 19, 1982.
1980 Mathematics Subject Classification. Primary 55P47, 55R40, 57R20; Secondary 55N22, 57R77.
Key words and phrases. Stable complex vector bundle, Chern classes, infinite loop space, cobordism of immersions, k-tuple points.

©1983 American Mathematical Society
0002-9947/82/0000-0644/$03.25

193
with the topology induced by the filtration given by
\[F_k CX = \operatorname{Im} \left(\prod_{n=0}^{k} C_n \times X^n \to CX \right). \]

Also in [4] it is proved that for any coefficient system for which \(C_n\) is \(\Sigma_n \)-contractible, \(CX \) has the weak homotopy type of the infinite loop space generated by \(X, QX \), for any connected space \(X \). This is true, in particular, for the coefficient systems given by the isometries operad \(\mathcal{C}_\infty \), the little cube operad \(\mathcal{C}_\infty \) and the system of configurations of points in \(\mathbb{R}^\infty \), \(\mathcal{F}(\mathbb{R}^\infty) \), where
\[\mathcal{F}(\mathbb{R}^\infty) = F(\mathbb{R}^\infty, n) = \left\{ (x_1 \cdots x_n) \in (\mathbb{R}^\infty)^n : x_i \neq x_j \right\}. \]

Using the approximation of \(QBU(1) \) given by \(C_\infty(BU(1)) \), Snaith in [15] constructed a stable map \(\tau: BU \to QBU(1) \) that is the right homotopy inverse of the unique map of infinite loop spaces \(\eta: QBU(1) \to BU \) that extends the inclusion \(BU(1) \subset BU \) (see [14] for a detailed proof).

In [4] it is proved that, for any connected \(X \), there is a splitting of \(QX \) given by stable maps
\[h_k: QX \to D_k(X) \]
where
\[D_k(X) = \frac{F_k(F(\mathbb{R}^\infty)(X))}{F_{k-1}(F(\mathbb{R}^\infty)(X))} = F(\mathbb{R}^\infty, k) \times_{\Sigma_k} X^k. \]

The following proposition is easily proved.

Proposition 2.1. If \(X = T(\xi) \) is the Thom space of some bundle \(\xi \), then \(D_k(X) \cong T(\xi^{(k)}) \), where
\[\xi^{(k)} = F(\mathbb{R}^\infty, k) \times_{\Sigma_k} \xi^k. \]

As \(BU(1) \) has the homotopy type of the Thom space of the universal line bundle \(T(\gamma^1) \), by composing we have a stable map
\[h_k: QBU(1) \to T(\gamma^{(k)}), \]
\(\gamma^{(k)} \) is a complex vector bundle, so it has a Thom class \(t_k \in H^{2k}(T(\gamma^{(k)}); \mathbb{Z}) \). We define the characteristic class
\[c_k = \tau^* h_k^*(t_k). \]

As usual, if \(\xi \) is any stable complex vector bundle we define \(\hat{c}_k(\xi) = f_k^* (\hat{c}_k) \), where \(f_k: M \to BU \) is the classifying map of \(\xi \).

As \(\gamma^{(k)} \) has also a Thom class in complex cobordism \(t_{\gamma}^{(k)} \in MU^{2k}(T(\gamma^k)) \), we can define in the same way \(\hat{c}_k^{(k)}, \hat{c}_k^{(k)}(\xi) \) and obviously they are mapped to \(\hat{c}_k, \hat{c}_k(\xi) \) by the standard map of spectra \(MU \to H\mathbb{Z} \).

Now, we want to identify \(\hat{c}_k \) as a polynomial in the Chern classes \(\{c_n\} \). It is convenient to reduce it mod \(p \) to \(\hat{c}_k^{(p)} \in H^{2k}(BU; \mathbb{Z}/p\mathbb{Z}) \) since there we can use the computations of the homology of infinite loop spaces \([3,4]\).

Proposition 2.2. \(\hat{c}_k^{(p)} \) agrees with the reduction mod \(p \) of the universal Chern class, \(c_k^{(p)} \), for any prime \(p \).
Proof. It is well known that $H_\ast(BU; \mathbb{Z})$ is a polynomial algebra with generators $\{a_n\}_{n \in \mathbb{N}}$, where $\{a_n\}_{n \in \mathbb{N}}$ is a basis of $H_\ast(BU(1); \mathbb{Z})$ as a \mathbb{Z}-module, and the same is true for homology with coefficients in \mathbb{Z}_p and the reductions $a_{np}^{(p)}$ [17].

Then, to compute $c_k^{(p)}$ we only need to evaluate it on each monomial $a_{i_1}^{(p)} \cdots a_{i_n}^{(p)}$ of dimension $2k$:

$$\left\langle c_k^{(p)}, a_{i_1}^{(p)} \cdots a_{i_n}^{(p)} \right\rangle = \left\langle h_k^{(p)}(t_k^{(p)}), a_{i_1}^{(p)} \cdots a_{i_n}^{(p)} \right\rangle = \left\langle t_k^{(p)}, h_k(\tau^p a_{i_1}^{(p)} \cdots a_{i_n}^{(p)}) \right\rangle.$$

To see the actions of h_k^* and τ^* let us recall that $H_\ast(QBU(1); \mathbb{Z}_p)$ is the Dyer-Lashof algebra with generators $\{a_n^{(p)}\}$ [3]. As $\tau^*|_{H_\ast(BU(1))} = 1$ and τ is an H-map [14], we have

$$\tau^* \left(a_{i_1}^{(p)} \cdots a_{i_n}^{(p)} \right) = a_{i_1}^{(p)} \cdots a_{i_n}^{(p)}.$$

As seen in [11] h_k^* sends to zero any monomial in $\{Q_i(a_i^{(p)})\}$ with height different from k and preserves any monomial of height k. But the only one of height k and dimension $2k$ is $(a_{i_1}^{(p)})^k$ so we have

$$\left\langle c_k^{(p)}, a_{i_1}^{(p)} \cdots a_{i_n}^{(p)} \right\rangle = 0 \quad \text{ for } a_{i_1}^{(p)}, \ldots, a_{i_n}^{(p)} \neq (a_{i_1}^{(p)})^k.$$

On the other hand,

$$\left\langle t_k^{(p)}, (a_{i_1}^{(p)})^k \right\rangle = 1,$$

since by [6] the cell representing $(a_{i_1}^{(p)})^k$ is the same that represents t_k (i.e.: $\{\ast\} \times \Sigma_k D(\gamma |_{S^k})^k$) so $c_k^{(p)}$ is the dual of $(a_{i_1}^{(p)})^k$ with respect to the basis of monomials in $\{a_n^{(p)}\}$, thus $c_k^{(p)} = c_k^{(p)}$ [2].

Corollary 2.3. $c_k = c_k \in H^{2k}(BU; \mathbb{Z}).$

Proof. \hat{c}_k is a homogeneous polynomial of dimension $2k$ in $\{c_n\}$, P_{2k}. $\hat{c}_k^{(p)}$ is the same polynomial in $\{c_n^{(p)}\}$ with coefficients reduced mod p. As the coefficient of any monomial different from c_k in P_{2k} is congruent to zero modulo any prime p, it has to be zero. Similarly, the coefficient of c_k is one. So, $\hat{c}_k = c_k$.

3. Geometric interpretation. In this section we give a geometric interpretation of the classes \hat{c}_k defined in §2. First we recall the geometric models for maps from a manifold M to $QBU(1)$ and the action that h_k has on them as described in [7].

Let ξ be a vector bundle over B_k^0 and let M be a smooth manifold. We denote by $\mathcal{S}(M, \xi)$ the group of cobordism classes of triples (N, g, \tilde{g}) where N is a manifold, g is an embedding $g: N \to M \times \mathbb{R}^\infty$ projecting to an immersion $f: N \to M$ whose normal bundle

$$\nu = f^*(T(M))/TN$$

is classified by the map \tilde{g}, i.e. \tilde{g} is a bundle map:

$$\begin{array}{ccc}
E_\nu & \xrightarrow{\hat{g}} & E_\xi \\
\downarrow p_\nu & & \downarrow p_\xi \\
N & \xrightarrow{\tilde{g}_i} & B_\xi
\end{array}$$
If \tilde{M} is the one point compactification of M, we define a homomorphism

$$\beta: \mathcal{S}(M, \xi) \rightarrow \left[\tilde{M}, F(\mathbb{R}^\infty, T(\xi))\right]$$

as follows.

For any (N, g, \tilde{g}) we extend f to an immersion $\tilde{f}: \nu \rightarrow M$ satisfying:

(i) $(\tilde{f}, e \cdot p_i): E_v \rightarrow M \times \mathbb{R}^\infty$ is an embedding, where e is the composite map

$$N \xrightarrow{\tilde{g}} M \times \mathbb{R}^\infty \xrightarrow{\pi_2} \mathbb{R}^\infty.$$

(ii) There is an integer n such that $\tilde{f}^{-1}(m)$ has at most n points for any $m \in M$.

Then we define a map H by

$$H(m) = \left\{ \begin{array}{ll}
\{ e(p_i(x)) : x \in \tilde{f}^{-1}(m) \} & \text{if } m \in \text{Im } \tilde{f}, \\
\ast & \text{otherwise,}
\end{array} \right.$$

and $\beta([(N, g, \tilde{g})]) = [H]$.

In [7] the following is proved.

Theorem 3.1. β is a group isomorphism.

If $f: N \rightarrow M$ is a self-transverse immersion,

$$\tilde{N}_k = \{(x_1 \cdot \cdot \cdot x_k) \in N^k : x_i \neq x_j \text{ and } f(x_i) = f(x_j) \text{ for any } i, j\}$$

is a submanifold of N^k. Then, we define the manifold of k-tuple points of f, N_k, as the quotient of \tilde{N}_k by the Σ_k-action given by permuting factors. The map induced by $f, f_k: N_k \rightarrow M$, is an immersion whose normal bundle v_k is the quotient of $v_k|_{\tilde{N}_k}$ by the same Σ_k-action.

If we define the operation

$$\theta_k: \mathcal{S}(M, \xi) \rightarrow \mathcal{S}(M, \xi(k))$$

by $\theta_k([(N, g, \tilde{g})]) = [(N_k, g', \tilde{g}')$, where g' and \tilde{g}' are associated to f_k then, the following is proved in [7].

Theorem 3.2. The diagram

$$\mathcal{S}(M, \xi) \xrightarrow{\beta} \left[\tilde{M}, F(\mathbb{R}^\infty, (T(\xi)))\right]$$

$$\downarrow \theta_k \downarrow h_k,$$

$$\mathcal{S}(M, \xi(k)) \xrightarrow{\beta} \left[\tilde{M}, F(\mathbb{R}^\infty)(T(\xi(k)))\right]$$

commutes.

Now we are going to define extensions of f in good position and show some advantages. We define the manifold of based k-tuple points of f, N'_k, as the quotient of \tilde{N}_k by the Σ_{k-1}-action given by permuting the first $(k - 1)$ factors. The map $f'_k: N'_k \rightarrow N$ that sends each pointed k-tuple to the base point is an immersion whose normal bundle v'_k is the quotient of $v^{k-1} \times \{0\} |_{\tilde{N}_k}$ by the same Σ_{k-1}-action. The projection $\pi_k: N'_k \rightarrow N_k$ is a k-cover and we call $\tilde{\pi}_k: v'_k \rightarrow v_k$ the obvious monomorphism of bundles over it. (Notice that $\pi_k^*(v_k)$ is isomorphic to $v'_k \oplus f'_k*(\nu)$.)
Then the map \(\tilde{f}: v \to M \) is said to be an extension of \(f \) in good position if:

(i) \(\tilde{f} \) is an immersion extending \(f \).

(ii) For any \(k \), there are immersions

\[\tilde{f}_k': v_k' \to N \]

extending \(f_k' \) and

\[\tilde{f}_k: v_k \to M \]

extending \(f_k \), and a map of vector bundles over \(f_k' \),

\[\tilde{f}_k''_k: \pi_k^k (v_k) \to v, \]

such that the diagram

\[
\begin{array}{ccc}
v & \xrightarrow{\bar{f}} & N \\
\downarrow \scriptstyle{\tilde{f}_k''} & & \downarrow \scriptstyle{f_k} \\
\tilde{f}_k' & \xrightarrow{\pi_k^k} & v_k' \\
\downarrow \scriptstyle{\pi_k^k (v_k)} & & \downarrow \scriptstyle{\tilde{f}_k} \\
& & v_k \\
\end{array}
\]

commutes.

(iii) \(\text{Im} \ \tilde{f}_k \) is the set of multiple points of \(\tilde{f} \) of multiplicity greater than or equal to \(k \), for any \(k \).

In the Appendix we prove the existence and uniqueness of extensions in good position, but now we point out some advantages.

Let us define \(M_k \) as the closure of \((\text{Im} \ \tilde{f}_k - \text{Im} \ \tilde{f}_{k+1}) \) in \(\text{Im} \ \tilde{f}_k \) and \(N_k \) as the closure of \((\text{Im} \ f_k - \text{Im} \ f_{k+1}) \) in \(\text{Im} \ f_k \). Then the obvious map \(M_k \to N_k \) is a cube bundle classified by the map \(N_k \to F(\mathbb{R}^\infty, k) \times \Sigma^k \mathbf{B}^k \). So, the next proposition follows directly from the definition of \(\beta \).

Proposition 3.3. The map \(h: M \to QT(\zeta) \) associated with the triple \((N, g, \tilde{g})\) restricted to \(M - \text{Im} \ \tilde{f}_{k+1} \) factors through \(F_k(\mathbb{R}^\infty)(T(\zeta)) \) and the composite map

\[M - \text{Im} \ \tilde{f}_{k+1} \xrightarrow{h_k} F_k(\mathbb{R}^\infty)(T(\zeta)) \xrightarrow{h_k} T(\zeta^{(k)}) \]

is the Thom-Pontrjagin construction on the bundle \(M_k \to N_k \).

Now, let \(\xi \) be a stable complex vector bundle over a weakly complex manifold \(M \), classified by the homotopy class of a map \(f_\xi: M \to BU \). The composite map \(f' = \tau f_\xi: M \to QBU(1) \) gives a cobordism class \([(N, g, \tilde{g})]\) in \(\mathfrak{S}(M, y) \). If the immersion \(f: N \to M \) is the projection of \(g \), we can choose an extension of \(f \) in good position \(\tilde{f}: v \to M \) and get, using the next lemma, a geometric interpretation of \(\hat{c}_k(\xi) \).
Lemma 3.4. Let M' be a codimension zero submanifold of M. Then, the diagram

\[
\begin{array}{ccc}
MU_{n-q}(M) & \xrightarrow{PD} & MU^q(M) \\
\downarrow i_* & & \downarrow j_* \\
MU_{n-q}(M, M') & \xrightarrow{\uparrow e_*} & MU^q(M - \text{int } M', \partial M')
\end{array}
\]

commutes for any q, where the vertical maps are induced by the corresponding inclusions, e_* being an isomorphism by the excision axiom and the horizontal maps are given by the Lefschetz duality (LD) and Poincaré duality (PD).

The proof is an immediate application of transversality to the geometric models of $MU^*(X)$ and $MU^*(X)$ given in [12].

Now, in the case $M' = \text{Im } f_{k+1}$, we have

Theorem 3.5. $i_*(PD^{-1}(\hat{c}_k^U(\xi))) = i_*([N_k, f_k, v_k])$ as elements of $MU_{n-2k}(M, M')$, where $[(N_k, f_k, v_k)]$ is the element of $MU_{n-2k}(M)$ given by the map $f_k: N_k \to M$ and the obvious complex orientation of v_k.

Proof. The diagram

\[
\begin{array}{ccc}
MU^{2k}(M) & \xrightarrow{\langle f'_k \rangle^*} & MU^{2k}(F(R^\infty)(BU(1))) \\
\downarrow j^* & & \downarrow h_k^* \\
MU^{2k}(M - \text{int } M') & \xrightarrow{\langle f'_k \rangle^*} & MU^{2k}(F_kF(R^\infty)(BU(1)))
\end{array}
\]

commutes since the left-hand square is induced by inclusions and restrictions and the right-hand triangle commutes by definition of h_k.

So, $j^*(\hat{c}_k^U(\xi)) = j^*(f'_k\gamma h^*_k(t_k)) = (f_k')^*p_k^*(t_k)$ and, as f'_k is the Thom-Pontrjagin construction of M_k over N_k,

\[
i_*(PD^{-1}(\hat{c}_k^U(\xi))) = e_*LD^{-1}j^*(\hat{c}_k^U(\xi)) = e_*LD^{-1}(f_k')^*p_k^*(t_k)
\]

is represented by the triple $[(N_k, f_k, v_k)]$, the same as $i_*([(N_k, f_k, v_k)])$.

Corollary 3.6. $\hat{c}_k(\xi) = PDf_{k*}([N_k]) \in H^{2k}(M; \mathbb{Z})$ where $[N_k]$ is the fundamental class of N_k.

Proof. Using the standard map $MU \to H\mathbb{Z}$ we get

\[
i_*(PD^{-1}(\hat{c}_k(\xi))) = i_*\left(f_{k*}([N_k])\right) \in H_{n-2k}(M, M').
\]

As M' has the homotopy type of an $(n - 2(k + 1))$ dimensional complex, i_* is a monomorphism in the given dimension, thus the result holds.
4. Appendix. The goal of this Appendix is to prove the existence and uniqueness up to regular homotopy of extensions in good position of a self-transverse immersion \(f \). First, we recall the existence of some special kind of charts.

Lemma 4.1 [5]. Let \(f: N \to M \) be a self-transverse immersion of codimension \(a = \dim M - \dim N \). For any \(y \in M \) such that \(f^{-1}(y) = \{x_1, \ldots, x_r\} \) there are charts at \(y \), \((W, \psi)\) and at \(x_i \), \((U_i, \phi_i)\) such that \(f^{-1}(W) \) is the disjoint union of the \(U_i \)'s and the composition

\[
(\mathbb{R}^r \times (\mathbb{R}^a)^{r-1}, \mathbb{R}^r) \to (U_i, \operatorname{Im} f_{i'}) \to (W, \operatorname{Im} f_i) \to (\mathbb{R}^r \times (\mathbb{R}^a)^r, \mathbb{R}^r)
\]

is defined \((t = \dim M - ra)\) and it is the inclusion

\[
\mathbb{R}^r \times (\mathbb{R}^a)^{r-1} \supset \mathbb{R}^r \times H_i \to \mathbb{R}^r \times (\mathbb{R}^a)^r
\]

where \(H_i = (\mathbb{R}^a)^{r-1} \times \{0\} \times (\mathbb{R}^a)^{r-1} \).

Obviously if \(M \) and \(N \) are compact, there are finite coverings given by such charts and we assume that \(W_j \) meets \(\operatorname{Im} f_1, \ldots, \operatorname{Im} f_r \) but does not meet \(\operatorname{Im} f_{r-a} \).

From now on we use the following notation: \((\xi, \xi^1, \ldots, \xi^{(r-1)}, P)\) always denotes an \(r \)-tuple of bundles over the manifold \(P \) with fibre

\[
\left((\mathbb{R}^a)^r, \bigcup_{i=1}^r H_i, \bigcup_{i, j=1}^r H_i \cap H_j, \ldots, \bigcup_{i=1}^r L_i, \{0\} \right)
\]

where \(L_i = \{0\}^{r-1} \times \mathbb{R}^a \times \{0\}^{r-1} \).

Proposition 4.2. Let \(N_d \) be the manifold of the deepest intersection points. There are immersions \(f_d, \tilde{f}_d \) such that

\[
\begin{array}{ccc}
(v_d^{(1)}, \ldots, v_d^{(d-1)}, N'_d) & \xrightarrow{\tilde{f}_d} & (N, \operatorname{Im} f_2, \ldots, \operatorname{Im} f_d) \\
\downarrow & & \downarrow \\
(v_d^{(1)}, \ldots, v_d^{(d)}, N_d) & \xrightarrow{f_d} & (\operatorname{Im} f_1, \operatorname{Im} f_2, \ldots, \operatorname{Im} f_d)
\end{array}
\]

commutes where

\[
v_d^{(i-1)} = \frac{\nu_d^{d-1} \times \{0\}}{\sum_{i-1}} \quad \text{and} \quad \nu_d^{(i)} = \frac{\nu_d^d}{\sum_i}.
\]

Proof. By 4.1, there are embeddings of the trivial bundle

\[
e_d: (W_j \cap \operatorname{Im} f_d) \times (\mathbb{R}^a)^d, \bigcup_{i=1}^d H_i, \ldots \to (M, \operatorname{Im} f_1, \ldots, \operatorname{Im} f_d) \cap W_j
\]

and we can glue them by inductive use of the isotopy lemma of tubular neighbourhoods of Mather [8].

Now, choosing an isomorphism \(\theta: \pi_d^* (v_d) \to f_d^* (v) \), we define \(\tilde{f}_d^* \) as the composite map of \(\theta \) and the map \(f_d^* (v) \to v \). Thus, \(\tilde{f}_d^* |_{\operatorname{Im} f_d} \) is the only map commuting the diagram given in the definition of good position.
RAFAEL SIVERA

THEOREM 4.3. Given a self-transverse immersion $f: N \to M$ there is an extension in good position and any two given extensions are regularly homotopic mod $\text{Im} \ f$.

PROOF. The uniqueness is an obvious consequence of the uniqueness of tubular neighbourhoods.

For the existence part, we construct $\tilde{f}_k, \tilde{f}', \tilde{f}''$ and $\tilde{f}|_{\text{Im} \ f}$ by downward induction. Let us sketch how the construction goes for $k = d - 1$.

We define

$$\left(\overline{N}_{d-1}, \overline{N}'_{d-1} \right) = f^{-1}_{d-1} \left(\text{Im} \ \tilde{f}_d, \tilde{f}_d \left(D(v_d) \right) \right),$$

$$\left(\overline{N}'_{d-1}, \overline{N}''_{d-1} \right) = f''_{d-1} \left(\text{Im} \ \tilde{f}_d', \tilde{f}_d' \left(D(v'_d) \right) \right)$$

and the maps

$$g: v_{d-1} |_{\overline{N}_{d-1}} \to v_d \sim D(v_d) \to M,$$

$$g': v'_{d-1} |_{\overline{N}'_{d-1}} \to v'_d \sim D(v'_d) \to N.$$

Now, as before, we extend these maps glueing charts but leaving fixed $g|_{\overline{N}_{d-1}}$ and $g'|_{\overline{N}'_{d-1}}$. Thus, we get \tilde{f}_d-1 and \tilde{f}'_{d-1} commuting the appropriate diagram and, as above, they give \tilde{f}''_{d-1}.

REFERENCES

DEPARTAMENTO DE GEOMETRIA Y TOPOLOGIA, FACULTAD DE MATEMATICAS, UNIVERSIDAD DE VALENCIA, BURJASOT, VALENCIA, SPAIN