Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the dimension of the $ l\sp{n}\sb{p}$-subspaces of Banach spaces, for $ 1\leq p<2$


Author: Gilles Pisier
Journal: Trans. Amer. Math. Soc. 276 (1983), 201-211
MSC: Primary 46B20; Secondary 60B11
DOI: https://doi.org/10.1090/S0002-9947-1983-0684503-5
MathSciNet review: 684503
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give an estimate relating the stable type $ p$ constant of a Banach space $ X$ with the dimension of the $ l_p^n$-subspaces of $ X$. Precisely, let $ C$ be this constant and assume $ 1 < p < 2$. We show that, for each $ \varepsilon > 0,X$ must contain a subspace $ (1 + \varepsilon )$-isomorphic to $ l_p^k$, for every $ k$ less than $ \delta (\varepsilon ){C^{p^{\prime}}}$ where $ \delta (\varepsilon ) > 0$ is a number depending only on $ p$ and $ \varepsilon $.


References [Enhancements On Off] (What's this?)

  • [1] D. Amir and V. D. Milman, Unconditional and symmetric sets in $ n$-dimensional normed spaces, Israel J. Math. 37 (1980), 3-20. MR 599298 (83b:46016)
  • [2] A. de Acosta, Inequalities for $ B$-valued random vectors with applications to the strong law of large numbers, Ann. Probab. 9 (1981), 157-161. MR 606806 (83c:60009)
  • [3] W. Feller, An introduction to probability theory, Vol. II, Wiley, New York, 1966. MR 0210154 (35:1048)
  • [4] T. Figiel, J. Lindenstrauss and V. D. Milman, The dimensions of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53-94. MR 0445274 (56:3618)
  • [5] J. Hoffmann-Jørgensen, Sums of independent Banach space valued random variables, Studia Math. 52 (1974), 159-186. MR 0356155 (50:8626)
  • [6] W. B. Johnson and G. Schechtman, Embedding $ l_p^m$ into $ l_1^n$, Acta Math. (to appear). MR 674167 (84a:46031)
  • [7] J. L. Krivine, Sous-espaces de dimension finie des espaces de Banach réticulé, Ann. of Math. (2) 104 (1976), 1-29. MR 0407568 (53:11341)
  • [8] H. Lemberg, Nouvelle démonstration d'un théorème de J. L. Krivine sur la finie représentation de $ {l_p}$ dans un espace de Banach, Israel J. Math. 39 (1981), 341-348. MR 636901 (83b:46015)
  • [9] R. Lepage, M. Woodroofe and J. Zinn, Convergence to a stable distribution via order statistics, Ann. Probab. 9 (1981), 624-632. MR 624688 (82k:60049)
  • [10] M. B. Marcus and G. Pisier, Characterizations of almost surely continuous $ p$-stable random Fourier series and strongly stationary processes (to appear). MR 741056 (86b:60069)
  • [11] B. Maurey and G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés geométriques des espaces de Banach, Studia Math. 58 (1976), 45-90. MR 0443015 (56:1388)
  • [12] H. P. Rosenthal, On a theorem of J. L. Krivine, J. Funct. Anal. 28 (1978), 197-225. MR 493384 (81d:46020)
  • [13] V. V. Yurinski, Exponential bounds for large deviations, Theor. Probability Appl. 19 (1974), 154-155.
  • [14] V. D. Milman, New proof of the theorem of A. Dvoretzky on sections of convex bodies, Functional Anal. Appl. 5 (1971), 28-37. MR 0293374 (45:2451)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46B20, 60B11

Retrieve articles in all journals with MSC: 46B20, 60B11


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0684503-5
Keywords: Finite-dimensional $ {l_p}$-spaces, stable type $ p$ Banach spaces, $ p$-stable vector valued random variables
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society