Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A general sufficiency theorem for nonsmooth nonlinear programming


Author: R. W. Chaney
Journal: Trans. Amer. Math. Soc. 276 (1983), 235-245
MSC: Primary 90C30
DOI: https://doi.org/10.1090/S0002-9947-1983-0684505-9
MathSciNet review: 684505
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Second-order conditions are given which are sufficient to guarantee that a given point be a local minimizer for a real-valued locally Lipschitzian function over a closed set in $ n$-dimensional real Euclidean space. These conditions are expressed in terms of the generalized gradients of Clarke. The conditions provide a very general and unified framework into which many previous first- and second-order theorems fit.


References [Enhancements On Off] (What's this?)

  • [1] R. W. Chaney, Second-order optimality conditions for a class of nonlinear programming problems, J. Math. Anal. Appl. 76 (1980), 516-534. MR 587359 (82a:90132)
  • [2] -, Second-order sufficiency conditions for nondifferentiable programming problems, SIAM J. Control Optim. 7 (1982), 463-475. MR 642177 (83j:90077)
  • [3] -, On sufficient conditions in nonsmooth optimization, Math. Oper. Res. 20 (1982), 20-33. MR 667935 (83m:49021)
  • [4] F. H. Clarke, A new approach to Lagrange multipliers, Math. Oper. Res. 1 (1976), 165-174. MR 0414104 (54:2209)
  • [5] -, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247-262. MR 0367131 (51:3373)
  • [6] -, Generalized gradients of Lipschitz functionals, Adv. in Math. 40 (1981), 52-67. MR 616160 (83a:26031)
  • [7] -, Nonsmooth analysis and optimization (forthcoming).
  • [8] R. Fletcher and G. A. Watson, First and second order conditions for a class of nondifferentiable optimization problems, Math. Programming 18 (1980), 291-307. MR 571992 (81h:90124)
  • [9] M. R. Hestenes, Calculus of variations and optimal control theory, Wiley, New York and London, 1966. MR 0203540 (34:3390)
  • [10] -, Optimization theory: The finite dimensional case, Interscience, New York, 1975. MR 0461238 (57:1223)
  • [11] J.-B. Hiriart-Urruty, Refinements of necessary optimality conditions in nondifferentiable programming. I, Appl. Math. Optim. 5 (1979), 63-82. MR 526428 (80e:90094)
  • [12] A. D. Ioffe, Necessary and sufficient conditions for a local minimum $ 3$: Second-order conditions and augmented duality, SIAM J. Control Optim. 17 (1979), 266-288. MR 525027 (82j:49005c)
  • [13] G. Lebourg, Generic differentiability of Lipschitzian functions, Trans. Amer. Math. Soc. 256 (1979), 125-144. MR 546911 (80i:58012)
  • [14] -, Valeur moyenne pour gradient généralisé, C. R. Acad. Sci. Paris Ser. A 281 (1975), 795-797.
  • [15] O. L. Mangasarian and S. Fromovitz, The Fritz John necessary optimality conditions in the presence of equality and inequality constraints, J. Math. Anal. Appl. 17 (1967), 37-47. MR 0207448 (34:7263)
  • [16] R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Control Optim. 15 (1977), 959-972. MR 0461556 (57:1541)
  • [17] J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York, 1970. MR 0273810 (42:8686)
  • [18] R. T. Rockafellar, Clarke's tangent cones and the boundaries of closed sets in $ {R^n}$, Nonlinear Anal. Theor. Meth. Appl. 3 (1979), 145-154. MR 520481 (80d:49032)
  • [19] -, Convex analysis, Princeton Univ. Press, Princeton, N.J., 1970.
  • [20] -, Directionally Lipschitzian functions and subdifferential calculus, Proc. London Math. Soc. 39 (1979), 331-355. MR 548983 (80j:46070)
  • [21] -, Generalized directional derivatives and subgradients of nonconvex functions, Canad. J. Math. 32 (1980), 257-280. MR 571922 (81f:49006)
  • [22] -, Lagrange multipliers and subderivatives of optimal value functions in nonlinear programming, Math. Programming Study 17 (1982), 28-66. MR 654690 (84h:90067)
  • [23] -, La théorie des sous-gradients et ses applications: Fonctions convexes et non convexes, Collection Chaire Aisenstadt, Presses de l'Université de Montréal, Montreal, 1979. MR 531033 (80g:49023)
  • [24] J. E. Spingarn, Submonotone subdifferentials of Lipschitz functions, Trans. Amer. Math. Soc. 264 (1981), 77-89. MR 597868 (82g:26016)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 90C30

Retrieve articles in all journals with MSC: 90C30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0684505-9
Keywords: Second-order sufficiency conditions, nonsmooth constrained optimization
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society