Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On genus $ 2$ Heegaard diagrams for the $ 3$-sphere


Author: Takeshi Kaneto
Journal: Trans. Amer. Math. Soc. 276 (1983), 583-597
MSC: Primary 57M40; Secondary 20F05, 57M05
DOI: https://doi.org/10.1090/S0002-9947-1983-0688963-5
MathSciNet review: 688963
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ D$ be any genus $ 2$ Heegaard diagram for the $ 3$-sphere and $ \left\langle {{a_1}, {a_2}; {{\tilde r}_1}, {{\tilde r}_2}} \right\rangle $ be the cyclically reduced presentation associated with $ D$. We shall show that $ {{\tilde{r}}_1}$ contains $ {{\tilde{r}}_2}$ or $ {\tilde{r}}_2^{-1}$ as a subword in cyclic sense if $ \left\{{\tilde r}_1, {\tilde r}_2 \right\} \ne \left\{{a_1}^{\pm 1}, {a_2}^{\pm 1} \right\}$ holds, and that, using this property, $ \left\langle {a_1}, {a_2};{r_1}, {r_2} \right\rangle $ can be transformed to the trivial one $ \left\langle {{a_1}, {a_2};{a_1}^{\pm 1}, a_2^{\pm 1}} \right\rangle $. By the recent positive solution of genus $ 2$ Poincaré conjecture, our result implies the purely algebraic, algorithmic solution to the decision problem; whether a given $ 3$-manifold with a genus $ 2$ Heegaard splitting is simply connected or not, equivalently, is homeomorphic to the $ 3$-sphere or not.


References [Enhancements On Off] (What's this?)

  • [1] J. S. Birman, Heegaard splitting, diagrams and sewings for closed orientable $ 3$-manifolds, Lecture notes for CBMS conference, October 8-12, 1977.
  • [2] J. S. Birman and H. M. Hilden, Heegaard splittings of branched coverings of $ {S^3}$, Trans. Amer. Math. Soc. 213 (1975), 315-352. MR 0380765 (52:1662)
  • [3] T. Homma, On presentations of fundamental groups of $ 3$-manifolds of genus $ 2$, Res. Rep. Inf. Sci. Ser. A. Math. Sci. Tokyo Inst. of Tech. No. A-58 (1978).
  • [4] T. Homma, M. Ochiai and M. Takahashi, An algorithm for recognizing $ {S^3}$ in $ 3$-manifolds with Heegaard splittings of genus two, Osaka J. Math. 17 (1980), 625-648. MR 591141 (82i:57013)
  • [5] T. Kaneto, On presentations of the fundamental group of the $ 3$-sphere associated with Heegaard diagrams, J. Math. Soc. Japan 33 (1981), 147-158. MR 597485 (82h:57003)
  • [6] O. Morikawa, A counter-example to a conjecture of Whitehead, Math. Sem. Notes Kobe Univ. 8 (1980), 295-299. MR 601897 (82h:57011)
  • [7] M. Takahashi, An alternative proof of Birman-Hilden-Viro's theorem, Tsukuba J. Math. 2 (1978), 27-34. MR 531959 (80e:57009)
  • [8] O. Ja. Viro and V. L. Kobel'skii, The Volodin-Kuznetsov-Fomenko conjecture on Heegaard diagrams is false, Uspehi Mat. Nauk 32 (1977), no. 5(197), 175-176. MR 0467757 (57:7609)
  • [9] I. A. Volodin, V. E. Kuznetsov and A. T. Fomenko, The problem of discriminating algorithmically the standard three-dimensional sphere, Russian Math. Surveys 29 (1974), 71-172.
  • [10] J. H. C. Whitehead, On certain sets of elements in a free group, Proc. London Math. Soc. 41 (1936), 48-56.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57M40, 20F05, 57M05

Retrieve articles in all journals with MSC: 57M40, 20F05, 57M05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0688963-5
Keywords: $ 3$-sphere, $ 3$-manifolds, Heegaard diagrams of genus $ 2$, fake Heegaard diagrams, surgeries, wave, group presentations, substitutions, strongly simply trivial
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society