Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Smooth type $ {\rm III}$ diffeomorphisms of manifolds


Author: Jane Hawkins
Journal: Trans. Amer. Math. Soc. 276 (1983), 625-643
MSC: Primary 58F11; Secondary 28D99
DOI: https://doi.org/10.1090/S0002-9947-1983-0688966-0
MathSciNet review: 688966
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove that every smooth paracompact connected manifold of dimension $ \geqslant 3$ admits a smooth type $ {\text{III}}_\lambda$ diffeomorphism for every $ 0 \leqslant \lambda \leqslant 1$. (Herman proved the result for $ \lambda = 1$ in [7].) The result follows from a theorem which gives sufficient conditions for the existence of smooth ergodic real line extensions of diffeomorphisms of manifolds.


References [Enhancements On Off] (What's this?)

  • [1] A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl. (9) 11 (1932), 333-375.
  • [2] Y. N. Dowker, Finite and $ \sigma $-finite invariant measures, Ann. of Math. (2) 54 (1951), 595-608. MR 0045193 (13:543a)
  • [3] N. Friedman, Introduction to ergodic theory, Reinhold, New York, 1970. MR 0435350 (55:8310)
  • [4] P. R. Halmos, Lectures on ergodic theory, Chelsea, New York, 1956. MR 0097489 (20:3958)
  • [5] D. V. Anosov, Existence of smooth ergodic flows on smooth manifolds, Math. USSR-Izv. 8 (1976), 525-551.
  • [6] J. Hawkins and K. Schmidt, On $ {C^2}$-diffeomorphisms of the circle which are of type $ {\text{III}}_1$, Invent. Math. 66 (1982), 511-518. MR 662606 (84g:58069)
  • [7] M. R. Herman, Construction de difféomorphismes ergodiques, Preprint, 1979.
  • [8] -, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math. 49 (1979), 5-234.
  • [9] E. Hopf, Theory of measure and invariant integrals, Trans. Amer. Math. Soc. 34 (1932), 373-393. MR 1501643
  • [10] R. Jones and W. Parry, Compact abelian group extensions of dynamical systems. II, Compositio Math. 25 (1972), 135-147. MR 0338318 (49:3083)
  • [11] Y. Katznelson, Sigma-finite invariant measures for smooth mappings of the circle, J. Analyse Math. 31 (1977), 1-18. MR 0486415 (58:6161)
  • [12] J. Kelley, General topology, Reinhold, New York, 1955. MR 0070144 (16:1136c)
  • [13] W. Krieger, On the Araki-Woods asymptotic ratio set and non-singular transformations of a measure space, Contributions to Ergodic Theory and Probability, Lecture Notes in Math., vol. 160, Springer-Verlag, Berlin and New York, 1970, pp. 158-177. MR 0414823 (54:2915)
  • [14] V. Losert and K. Schmidt, Probability measures on groups, Lecture Notes in Math., vol. 706, Springer-Verlag, Berlin and New York, 1979, pp. 220-230. MR 536988 (81a:28016)
  • [15] D. S. Ornstein, On invariant measures, Bull. Amer. Math. Soc. 66 (1960), 297-300. MR 0146350 (26:3872)
  • [16] K. Schmidt, Lectures on cocycles of ergodic transformation groups, MacMillan Lectures in Math., Vol. I, MacMillan, India, 1977. MR 0578731 (58:28262)
  • [17] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967). MR 0228014 (37:3598)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F11, 28D99

Retrieve articles in all journals with MSC: 58F11, 28D99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0688966-0
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society