Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Scattering theory and the geometry of multitwistor spaces


Author: Matthew L. Ginsberg
Journal: Trans. Amer. Math. Soc. 276 (1983), 789-815
MSC: Primary 32L25; Secondary 81D25, 81F20
MathSciNet review: 688978
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Existing results which show the zero rest mass field equations to be encoded in the geometry of projective twistor space are extended, and it is shown that the geometries of spaces of more than one twistor contain information concerning the scattering of such fields. Some general constructions which describe spacetime interactions in terms of cohomology groups on subvarieties in twistor space are obtained and are used to construct a purely twistorial description of spacetime propagators and of first order $ {\phi ^4}$ scattering. Spacetime expressions concerning these processes are derived from their twistor counterparts, and a physical interpretation is given for the twistor constructions.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah, N. J. Hitchin, V. G. Drinfel′d, and Yu. I. Manin, Construction of instantons, Phys. Lett. A 65 (1978), no. 3, 185–187. MR 598562, 10.1016/0375-9601(78)90141-X
  • [2] M. G. Eastwood, On raising and lowering helicity, in Advances in Twistor Theory, Research Notes in Math., no. 37, Pitman, San Francisco, London and Melbourne, 1979, pp. 97-100.
  • [3] -, Ambitwistors, Twistor Newsletter 9 (1979), 55-59.
  • [4] -, On non-projective twistor cohomology, Twistor Newsletter 10 (1980), 17.
  • [5] Michael G. Eastwood and Matthew L. Ginsberg, Duality in twistor theory, Duke Math. J. 48 (1981), no. 1, 177–196. MR 610183
  • [6] Michael G. Eastwood, Roger Penrose, and R. O. Wells Jr., Cohomology and massless fields, Comm. Math. Phys. 78 (1980/81), no. 3, 305–351. MR 603497
  • [7] Markus Fierz, Über den Drehimpuls von Teilchen mit Ruhemasse null und beliebigem Spin, Helvetica Phys. Acta 13 (1940), 45–60 (German). MR 0002109
  • [8] M. L. Ginsberg, A cohomological approach to scattering theory, Ph. D. thesis, Oxford University, 1980.
  • [9] D. G. Higman, Relative cohomology, Canad. J. Math. 9 (1957), 19–34. MR 0083486
  • [10] -, Non-projective propagators, Twistor Newsletter 11 (1981), 25-28.
  • [11] R. Godement, Theorie des faisceaux, Herrmann, Paris, 1964.
  • [12] A. P. Hodges, The description of mass within the theory of twistors, Ph. D. thesis, London University, 1975.
  • [13] -, Twistors and crossing symmetry, in Advances in Twistor Theory, Research Notes in Math., no. 37, Pitman, San Francisco, London and Melbourne, 1979, pp. 256-261.
  • [14] -, Compton scattering for massless electrons, in Advances in Twistor Theory, Research Notes in Math., no. 37, Pitman, San Francisco, London and Melbourne, 1979, pp. 262-268.
  • [15] L. P. Hughston and Richard Samuel Ward (eds.), Advances in twistor theory, Research Notes in Mathematics, vol. 37, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979. MR 578487
  • [16] Jean Leray, Le calcul différentiel et intégral sur une variété analytique complexe. (Problème de Cauchy. III), Bull. Soc. Math. France 87 (1959), 81–180 (French). MR 0125984
  • [17] R. Penrose, The structure of spacetime, in Batelle Rencontres (C. M. DeWitt and J. A. Wheeler, eds.), Benjamin, New York, 1967, pp. 121-235.
  • [18] R. Penrose, Twistor algebra, J. Mathematical Phys. 8 (1967), 345–366. MR 0216828
  • [19] -, Solutions of the zero rest mass equations, J. Math. Phys. 10 (1969), 38-39.
  • [20] -, Twistors and particles: an outline, in Quantum Theory and the Structure of Spacetime (L. Castell, M. Drieschner and C. F. von Weiszäcker, eds.), Verlag, Munich, 1975, pp. 129-245.
  • [21] -, Twistor theory, its aims and achievements, in Quantum Gravity, an Oxford Symposium (C. J. Isham, R. Penrose and D. W. Sciama, eds.), Oxford Univ. Press, Oxford, 1975.
  • [22] Roger Penrose, Nonlinear gravitons and curved twistor theory, General Relativity and Gravitation 7 (1976), no. 1, 31–52. The riddle of gravitation–on the occasion of the 60th birthday of Peter G. Bergmann (Proc. Conf., Syracuse Univ., Syracuse, N. Y., 1975). MR 0439004
  • [23] -, Twistor functions and sheaf cohomology, Twistor Newsletter 2 (1976), 3-12; also in Advances in Twistor Theory, Research Notes in Math., no. 37, Pitman, San Francisco, London and Melbourne, 1979, pp. 25-36.
  • [24] Roger Penrose, The twistor programme, Rep. Mathematical Phys. 12 (1977), no. 1, 65–76. MR 0465032
  • [25] R. Penrose and M. A. H. MacCallum, Twistor theory: an approach to the quantisation of fields and space-time, Phys. Rep. 6C (1973), no. 4, 241–315. MR 0475660
  • [26] Jean-Pierre Serre, Un théorème de dualité, Comment. Math. Helv. 29 (1955), 9–26 (French). MR 0067489
  • [27] Yum-tong Siu, Analytic sheaf cohomology groups of dimension 𝑛 of 𝑛-dimensional noncompact complex manifolds, Pacific J. Math. 28 (1969), 407–411. MR 0243116
  • [28] Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210112
  • [29] G. A. J. Sparling, Ph. D. thesis, London University, 1974.
  • [30] -, Homology and twistor theory, in Quantum Gravity, an Oxford Symposium (C. J. Isham, R. Penrose and D. W. Sciama, eds.), Oxford Univ. Press, Oxford, 1975, pp. 408-499.
  • [31] R. S. Ward, On self-dual gauge fields, Phys. Lett. A 61 (1977), no. 2, 81–82. MR 0443823
  • [32] R. O. Wells Jr., Complex manifolds and mathematical physics, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 2, 296–336. MR 520077, 10.1090/S0273-0979-1979-14596-8

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32L25, 81D25, 81F20

Retrieve articles in all journals with MSC: 32L25, 81D25, 81F20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1983-0688978-7
Article copyright: © Copyright 1983 American Mathematical Society