Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Conformally invariant variational integrals


Authors: S. Granlund, P. Lindqvist and O. Martio
Journal: Trans. Amer. Math. Soc. 277 (1983), 43-73
MSC: Primary 30C70; Secondary 49A21
DOI: https://doi.org/10.1090/S0002-9947-1983-0690040-4
MathSciNet review: 690040
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f:G \to {R^n}$ be quasiregular and $ I = \int {F(x,\nabla \,u)\,dm} $ a conformally invariant variational integral. Hölder-continuity, Harnack's inequality and principle are proved for the extremals of $ I$. Obstacle problems and their connection to subextremals are studied. If $ u$ is an extremal or a subextremal of $ I$, then $ u \circ f$ is again an extremal or a subextremal if an appropriate change in $ F$ is made.


References [Enhancements On Off] (What's this?)

  • [GZ] R. Gariepy and W. P. Ziemer, A regularity condition at the boundary for solutions of quasilinear elliptic equations, Arch. Rational Mech. Anal. 67 (1977), 25-39. MR 0492836 (58:11898)
  • [G] F. W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353-393. MR 0139735 (25:3166)
  • [Gr] S. Granlund, Harnack's inequality in the borderline case, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), 159-164. MR 595186 (81m:35041)
  • [HK] W. K. Hayman and P. B. Kennedy, Subharmonic functions, Academic Press, New York, 1976. MR 0460672 (57:665)
  • [L] H. Lebesgue, Sur le problème de Dirichlet, Rend. Circ. Mat. Palermo 24 (1907), 371-402.
  • [Li1] P. Lindqvist, A new proof of the lower-semicontinuity of certain convex variational integrals in Sobolev spaces, Report HTKK-MAT-A97 (1977), 1-10.
  • [Li2] -, On the Hölder continuity of monotone extremals in the borderline case, Ark. Mat. 19 (1981), 117-122. MR 625540 (83i:49030)
  • [M1] O. Martio, A capacity inequality for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 474 (1970), 1-18. MR 0291449 (45:540)
  • [M2] -, Equicontinuity theorem with an application to variational integrals, Duke Math. J. 42 (1975), 569-581. MR 0380599 (52:1498)
  • [M3] -, Reflection principle for solutions of elliptic partial differential equations and quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 7 (1981), 179-187. MR 639975 (82m:35048)
  • [MRV1] O. Martio, S. Rickman and J. Väisälä, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 448 (1969), 1-40. MR 0259114 (41:3756)
  • [MRV2] -, Distortion and singularities of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 465 (1970), 1-13. MR 0267093 (42:1995)
  • [MS] O. Martio and J. Sarvas, Density conditions in the $ n$-capacity, Indiana Univ. Math. J. 26 (1977), 761-776. MR 0477038 (57:16582)
  • [Maz] V. Mazja, On the continuity at a boundary point of the solution of quasi-linear elliptic equations, Vestnik Leningrad. Univ. Math. 25 (13) (1970), 42-55. (Russian) MR 0274948 (43:706)
  • [ME] N. G. Meyers and A. Elcrat, Some results on regularity for solutions of non-linear elliptic systems and quasiregular functions, Duke Math. J. 42 (1975), 121-136. MR 0417568 (54:5618)
  • [Mor] C. B. Morrey, Multiple integrals in the calculus of variations, Springer-Verlag, Berlin and New York, 1966. MR 0202511 (34:2380)
  • [Mos] G. D. Mostow, Quasiconformal mappings in $ n$-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53-104. MR 0236383 (38:4679)
  • [R1] Yu. G. Rešetnjak, Spatial mappings with bounded excursions, Sibirsk. Mat. Ž. 8 (1967), 629-658. (Russian) MR 0215990 (35:6825)
  • [R2] -, General theorems on semicontinuity and on convergence with functionals, Sibirsk. Mat. Ž. 8 (1967), 1051-1069. (Russian) MR 0220127 (36:3193)
  • [R3] -, Mappings with bounded deformation as extremals of Dirichlet type integrals, Sibirsk. Mat. Ž 9 (1968), 652-666. (Russian) MR 0230900 (37:6458)
  • [R4] -, Extremal properties of mappings with bounded distortion, Sibirsk. Mat. Ž. 10 (1969), 1300-1310. (Russian) MR 0276465 (43:2212)
  • [Ro] R. T. Rockafeller, Convex analysis, Princeton Univ. Press, Princeton, N. J., 1972.
  • [RR] T. Rado and P. V. Reichelderfer, Continuous transformations in analysis, Springer-Verlag, Berlin and New York, 1955. MR 0079620 (18:115c)
  • [S] J. Serrin, Local behavior of solutions of quasilinear equations, Acta Math. 111 (1964), 247-302. MR 0170096 (30:337)
  • [V] J. Väisälä, Lectures on $ n$-dimensional quasiconformal mappings, Lecture Notes in Math., vol. 229, Springer-Verlag, Berlin and New York, 1971. MR 0454009 (56:12260)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30C70, 49A21

Retrieve articles in all journals with MSC: 30C70, 49A21


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0690040-4
Keywords: Variational integrals, quasiregular mappings, subextremals
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society