Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Discrete series characters and Fourier inversion on semisimple real Lie groups


Author: Rebecca A. Herb
Journal: Trans. Amer. Math. Soc. 277 (1983), 241-262
MSC: Primary 22E46; Secondary 22E30
DOI: https://doi.org/10.1090/S0002-9947-1983-0690050-7
MathSciNet review: 690050
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a semisimple real Lie group. Explicit formulas for discrete series characters on noncompact Cartan subgroups are given. These formulas are used to give a simple formula for the Fourier transform of orbital integrals of regular semisimple orbits.


References [Enhancements On Off] (What's this?)

  • [1] D. Barbasch, Fourier inversion for unipotent invariant integrals, Trans. Amer. Math. Soc. 249 (1979), 51-83. MR 526310 (80j:22007)
  • [2] W. Chao, Fourier inversion and the Plancherel formula for semisimple Lie groups of real rank two, Ph. D. Thesis, Univ. of Chicago, Chicago, Ill., 1977.
  • [3] Harish-Chandra, (a) Discrete series for semisimple Lie groups. I, Acta Math. 113 (1965), 241-318. (b) Two theorems on semi-simple Lie groups, Ann. of Math. (2) 83 (1966), 74-128. (c) Supertempered distributions on real reductive groups, 1979 (preprint). MR 0194556 (33:2766)
  • [4] H. Hecht, The characters of Harish-Chandra representations, Math. Ann. 219 (1976), 213-226. MR 0427542 (55:573)
  • [5] R. Herb, (a) Character formulas for discrete series on semisimple Lie groups, Nagoya Math. J. 64 (1976), 47-61. (b) Fourier inversion of invariant integrals on semisimple real Lie groups, Trans. Amer. Math. Soc. 249 (1979), 281-302. (c) Characters of averaged discrete series on semisimple real Lie groups, Pacific J. Math. 80 (1979), 169-177. (d) Fourier inversion and the Plancherel theorem for semisimple real Lie groups, Amer. J. Math. 104 (1982), 9-58. (e) Fourier inversion and the Plancherel theorem, (Proc. Marseille Conf., 1980), Lecture Notes in Math., vol. 880, Springer-Verlag, Berlin and New York, 1982, pp. 197-210. MR 534706 (80h:22020)
  • [6] R. Herb and P. Sally, Singular invariant eigendistributions as characters in the Fourier transform of invariant distributions, J. Funct. Anal. 33 (1979), 195-210. MR 546506 (80j:22016)
  • [7] T. Hirai, Invariant eigendistributions of Laplace operators on real simple Lie groups. IV: Characters of discrete series for $ {\text{Sp(}}n,{\mathbf{R}})$, Japan J. Math. 3 (1977), 1-48. MR 0578896 (58:28273c)
  • [8] S. Martens, The characters of the holomorphic discrete series, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), 3275-3276. MR 0419687 (54:7705)
  • [9] H. Midorikawa, On the explicit formulae of characters for discrete series representations, Japan J. Math (N.S.) 3 (1977), 313-368. MR 529282 (80f:22015)
  • [10] P. Sally and G. Warner, The Fourier transform on semisimple Lie groups of real rank one, Acta Math. 131 (1973), 1-26. MR 0450461 (56:8755)
  • [11] W. Schmid, On the characters of discrete series, Invent. Math. 30 (1975), 47-144. MR 0396854 (53:714)
  • [12] D. Shelstad, (a) Orbital integrals and a family of groups attached to a real reductive group, Ann. Sci. École Norm. Sup. 12 (1979), 1-31. (b) Embeddings of $ L$-groups (preprint), (c) $ L$-indistinguishability for real groups (preprint). MR 532374 (81k:22014)
  • [13] J. Vargas, A character formula for the discrete series of a semisimple Lie group, Bull. Amer. Math. Soc. 2 (N.S.) (1980), 465-467. MR 561535 (81f:22023)
  • [14] G. Warner, Harmonic analysis on semisimple Lie groups, Vols. I, II, Springer-Verlag, Berlin and New York, 1972.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E46, 22E30

Retrieve articles in all journals with MSC: 22E46, 22E30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0690050-7
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society