Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Axioms for Stiefel-Whitney homology classes of some singular spaces


Author: Darko Veljan
Journal: Trans. Amer. Math. Soc. 277 (1983), 285-305
MSC: Primary 57P05
DOI: https://doi.org/10.1090/S0002-9947-1983-0690053-2
MathSciNet review: 690053
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A system of axioms for the Stiefel-Whitney classes of certain type of singular spaces is established. The main examples of these singular spaces are Euler manifolds mod$ \, 2$ and homology manifolds mod$ \, 2$. As a consequence, it is shown that on homology manifolds mod$ \, 2$ the generalized Stiefel conjecture holds.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, On formulae of Thom and Wu, Proc. London Math. Soc. 11 (1961), 741-752. MR 0139177 (25:2613)
  • [2] T. Banchoff and C. McCrory, A combinatorial formula for normal Stiefel- Whitney classes, Proc. Amer. Math. Soc. 76 (1979), 171-177. MR 534413 (80h:57031)
  • [3] J. Blanton and C. McCrory, An axiomatic proof of Stiefel conjecture, Proc. Amer. Math. Soc. 77 (1979), 409-414. MR 545605 (80k:55052)
  • [4] J. Blanton and P. Schweitzer, Axioms for characteristic classes for manifolds, Proc. Sympos. Pure Math., vol. 27, Amer. Math. Soc., Providence, R. I., 1975, pp. 349-356. MR 0375339 (51:11534)
  • [5] G. Brumfiel and J. Morgan, Homotopy theoretic consequences of N. Levitt's obstruction theory, Pacific J. Math. 67 (1976), 1-100. MR 0431185 (55:4187)
  • [6] S. Buoncristiano, C. Rourke and B. Sanderson, A geometric approach to homology theory, Cambridge Univ. Press, Cambridge, 1976. MR 0413113 (54:1234)
  • [7] P. Conner, Differentiable periodic maps, 2nd ed., Lecture Notes in Math., vol. 738, Springer-Verlag, Berlin and New York, 1978. MR 548463 (81f:57018)
  • [8] W. Fulton and R. MacPherson, Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc. No. 243 (1981). MR 609831 (83a:55015)
  • [9] R. Goldstein and E. Turner, Stiefel-Whitney homology classes of quasi-regular cell complexes, Proc. Amer. Math. Soc. 64 (1977), 157-162. MR 0467765 (57:7617)
  • [10] S. Halperin and D. Toledo, Stiefel-Whitney homology classes, Ann. of Math. (2) 96 (1972), 511-525. MR 0312515 (47:1072)
  • [11] -, The product formula for Stiefel-Whitney homology classes, Proc. Amer. Math. Soc. 48 (1975), 239-244. MR 0365584 (51:1836)
  • [12] H. King and S. Akbulut, Lectures on topology of real algebraic varieties (mimeographed).
  • [13] F. Latour, Variéties géométriques et résolutions. I: Classes caracteristiques, Ann. Sci. Ecole Norm. Sup. 10 (1977), 1-72. MR 0478172 (57:17661)
  • [14] C. McCrory, Cone complexes and PL transversality, Trans. Amer. Math. Soc. 207 (1975), 269-291. MR 0400243 (53:4078)
  • [15] -, A characterization of homology manifolds, J. London Math. Soc. 16 (1977), 149-159. MR 0445506 (56:3846)
  • [16] J. Milnor and J. Stasheff, Characteristic classes, Ann. of Math. Studies, no. 76, Princeton Univ. Press, Princeton, N. J., 1974. MR 0440554 (55:13428)
  • [17] D. Sullivan, Combinatorial invariants of analytic spaces, Lecture Notes in Math., vol. 209, Springer-Verlag, Berlin and New York, 1971, pp. 165-168. MR 0278333 (43:4063)
  • [18] -, Singularities in spaces, Lecture Notes in Math., vol. 209, Springer-Verlag, Berlin and New York, 1971, pp. 196-206. MR 0339241 (49:4002)
  • [19] L. Taylor, Stiefel-Whitney homology classes, Quart. J. Math. Oxford Ser. 28 (1977), 381-387. MR 0515729 (58:24286)
  • [20] D. Veljan, Euler manifolds and Stiefel-Whitney homology classes, Thesis, Cornell University, 1980.
  • [21] H. Whitney, On the theory of sphere bundles, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 148-153. MR 0001338 (1:220b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57P05

Retrieve articles in all journals with MSC: 57P05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0690053-2
Keywords: Stiefel-Whitney homology classes, Euler manifolds, homology manifolds, characteristic classes, block bundles
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society