Semistability at the end of a group extension

Author:
Michael L. Mihalik

Journal:
Trans. Amer. Math. Soc. **277** (1983), 307-321

MSC:
Primary 57M05; Secondary 20F32, 57M10

DOI:
https://doi.org/10.1090/S0002-9947-1983-0690054-4

MathSciNet review:
690054

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A -ended -complex, , is semistable at if all proper maps are properly homotopic. If and are finite -complexes with isomorphic fundamental groups, then the universal cover of is semistable at if and only if the universal cover of is semistable at . Hence, the notion of a finitely presented group being semistable at is well defined. We prove

Main Theorem. *Let* *be a short exact sequence of finitely generated infinite groups. If* *is finitely presented, then* *is semistable at* .

Theorem. *If* *and* *are locally compact, connected noncompact* -*complexes, then* *is semistable at* .

Theorem. *is semistable at* .

The proofs are geometrical in nature and the main tool is covering space theory.

**[1]**T. A. Chapman,*On some applications of infinite dimensional manifolds to the theory of shape*, Fund. Math.**76**(1972), 181-193. MR**0320997 (47:9530)****[2]**H. Freudenthal,*Über die Enden topologischer Raume und Gruppen*, Math. Z.**33**(1931), 692-713. MR**1545233****[3]**R. Geoghegan,*A note on the vanishing of*, Pure and Appl. Algebra**17**(1980), 113-116. MR**560787 (81i:18015a)****[4]**M. Greenberg,*Lectures on algebraic topology*, Math. Lecture Notes, Benjamin, New York, 1967, p. 21. MR**0215295 (35:6137)****[5]**J. Hempel and W. Jaco,*Fundamental groups of*-*manifolds which are extensions*, Ann. of Math.**95**(1972), 86-98. MR**0287550 (44:4754)****[6]**H. Hopf,*Enden offener Raume und unendliche diskontinuierliche Groupen*, Comment. Math. Helv.**16**(1943), 81-100. MR**0010267 (5:272e)****[7]**C. H. Houghton,*Cohomology and the behavior at infinity of finitely presented groups*, J. London Math. Soc.**15**(1977), 465-471. MR**0457577 (56:15782)****[8]**B. Jackson,*End invariants of group extension*, Topology**21**(1982), 71-81. MR**630881 (83a:57002)****[9]**R. Lee and F. Raymond,*Manifolds covered by Euclidean space*, Topology**14**(1945), 49-57. MR**0365581 (51:1833)****[10]**D. R. McMillan, Jr.,*Some contractible open*-*manifolds*, Trans. Amer. Math. Soc.**102**(1962), 373-382. MR**0137105 (25:561)****[11]**J. Stallings,*Group theory and three dimensional manifolds*, Yale Math. Monographs 4, Yale Univ. Press, New Haven, Conn., 1972. MR**0415622 (54:3705)****[12]**E. C. Zeeman,*Seminar on combinatorial topology*, Inst. Hautes Études Sci. Publ. Math. (1963), 9-10.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
57M05,
20F32,
57M10

Retrieve articles in all journals with MSC: 57M05, 20F32, 57M10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1983-0690054-4

Article copyright:
© Copyright 1983
American Mathematical Society