Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Twisting cochains and duality between minimal algebras and minimal Lie algebras


Author: Richard M. Hain
Journal: Trans. Amer. Math. Soc. 277 (1983), 397-411
MSC: Primary 55P62; Secondary 55U30
DOI: https://doi.org/10.1090/S0002-9947-1983-0690059-3
MathSciNet review: 690059
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An algebraic duality theory is developed between $ 1$-connected minimal cochain algebras of finite type and connected minimal chain Lie algebras of finite type by means of twisting cochains. The duality theory gives a concrete relationship between Sullivan's minimal models, Chen's power series connections and the various Lie algebra models of a $ 1$-connected topological space defined by Quillen, Allday, Baues-Lemaire and Neisendorfer. It can be used to compute the Lie algebra model of a space from the algebra model of the space and vice versa.


References [Enhancements On Off] (What's this?)

  • [1] C. Allday, Rational Whitehead product and a spectral sequence of Quillen. II, Houston J. Math. 3 (1977), 301-308. MR 0474288 (57:13935)
  • [2] H. J. Baues and J. M. Lemaire, Minimal models in homotopy theory, Math. Ann. 225 (1977), 219-242. MR 0431172 (55:4174)
  • [3] E. H. Brown, Jr., Twisted tensor products. I, Ann. of Math. (2) 69 (1959), 223-246. MR 0105687 (21:4423)
  • [4] K.-T. Chen, Extension of $ {C^\infty }$ function algebra by integrals and Malcev completion of $ {\pi _1}$, Adv. in Math. 23 (1977), 181-210. MR 0458461 (56:16664)
  • [5] -, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977), 831-879. MR 0454968 (56:13210)
  • [6] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. MR 0382702 (52:3584)
  • [7] V. K. A. M. Gugenheim, On a perturbation theory for the homology of the loop-space, preprint.
  • [8] R. M. Hain, Iterated integrals, minimal models and rational homotopy theory, Ph.D. thesis, Univ. of Illinois, 1980.
  • [9] D. Lehmann, Théorie homotopique des formes différentielles, Astérisque 45 (1977).
  • [10] J. M. Lemaire, Algèbres connexes it homologie de espace de lacets, Lecture Notes in Math., vol. 422, Springer-Verlag, Berlin, Heidelburg and New York, 1974. MR 0370566 (51:6793)
  • [11] -, Modèles minimaux pour les algèbres de chaines, Publ. Dép. Math. (Lyon) (3) 13 (1976), 13-26. MR 0461500 (57:1485)
  • [12] J. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211-264. MR 0174052 (30:4259)
  • [13] J. Neisendorfer, Lie algebras, coalgebras and rational homotopy theory for nilpotent spaces, Pacific J. Math. 74 (1978), 429-460. MR 494641 (80b:55010)
  • [14] D. Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205-295. MR 0258031 (41:2678)
  • [15] D. Sullivan, Topology of manifolds and differential forms, Manifolds-Tokyo 1973, edited by Akio Hattori, Univ. of Tokyo Press, Tokyo, 1975. MR 0370611 (51:6838)
  • [16] -, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269-331. MR 0646078 (58:31119)
  • [17] Y. Felix, Modèles bifiltré: une plaque tournante en homotopie rationnelle, Canad. J. Math. 33 (1981), 1448-1458. MR 645238 (83i:55013)
  • [18] R. M. Hain, Iterated integrals and homotopy periods, Mem. Amer. Math. Soc. (to appear) MR 727818 (85d:55015)
  • [19] D. Tanré, Modèles de Chen, Quillen, Sullivan, Publ. U.E.R. Math. Pures Appl. IRMA 2 (1980), No. 1, Exp. No. 2, 8 pp. MR 637192 (83a:55018)
  • [20] -, Dualite d'Eckmann-Hilton à travers les modèles de Chen-Quillen-Sullivan, Cahiers Topologie Géom. Différentielle 22 (1981), 53-59.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55P62, 55U30

Retrieve articles in all journals with MSC: 55P62, 55U30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0690059-3
Keywords: Minimal algebra, minimal Lie algebra, formal homology connection
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society