Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Relative genus theory and the class group of $ l$-extensions


Author: Gary Cornell
Journal: Trans. Amer. Math. Soc. 277 (1983), 421-429
MSC: Primary 12A35; Secondary 12A50, 12A65
DOI: https://doi.org/10.1090/S0002-9947-1983-0690061-1
MathSciNet review: 690061
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The structure of the relative genus field is used to study the class group of relative $ l$-extensions. Application to class field towers of cyclic $ l$-extensions of the rationals are given.


References [Enhancements On Off] (What's this?)

  • [1] G. Cornell, Genus fields and the class group of number fields, Ph.D. Thesis, Brown University, 1978.
  • [2] -, Abhyankar's lemma and the class group, Number Theory, Carbondale, 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979) (M. Nathanson, ed.), Lecture Notes in Math., vol. 751, Springer-Verlag, Berlin and New York, pp. 82-88.
  • [3] -, On the construction of relative genus fields, Trans. Amer. Math. Soc. 271 (1982), 501-511. MR 654847 (83h:12019)
  • [4] -, Structure of the ray class group and the class group (to appear).
  • [5] G. Cornell and M. Rosen, Cohomological analysis of the class group extension problem (Proc. Conf. Number Theory, Queen's Univ., New York) (P. Ribenboim, ed.), Kingston, 1980, pp. 287-308. MR 634695 (83b:12011)
  • [6] Y. Furuta, The genus field and genus number in finite number fields, Nagoya Math. J. 29 (1967), 281-285. MR 0209260 (35:162)
  • [7] -, On class field towers and the rank of ideal class groups, Nagoya Math. J. 48 (1972), 145-157. MR 0325574 (48:3921)
  • [8] F. Gerth, Number fields with prescribed $ l$-class groups, Proc. Amer. Math. Soc. 49 (1975), 284-288. MR 0366871 (51:3117)
  • [9] D. Gorenstein (Editor), Reviews on finite group theory, Amer. Math. Soc., Providence, R.I., 1974. MR 0349819 (50:2312)
  • [10] G. Gras, Sur les $ l$-classes d'ideaux dans les extensions cycliques relatives de degreé premier $ l$, Ann. Inst. Fourier (Grenoble) 29 (1973), 1-49. MR 0360519 (50:12967)
  • [11] E. Inaba, Über die structur der $ l$-Klassengruppe Zahlkörper von primzahlgrad $ l$, J. Fac. Sci. Univ. Tokyo Sect. II 21 (1940), 61-115. MR 0002999 (2:147a)
  • [12] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 189-192. MR 0083013 (18:644d)
  • [13] -, On the $ \mu $-invariants of $ {Z_l}$-extensions, Number Theory, Algebraic Geometry and Commutative Algebra (in honor of Y. Akizuki), Kinokuniya, Tokyo, 1973, pp. 1-11.
  • [14] H. Kisilevsky, Some results related to Hilbert's Theorem 94, J. Number Theory 2 (1970), 199-206. MR 0258793 (41:3439)
  • [15] T. Takeuchi, Notes on class field towers of cyclic fields of degree $ l$, Tôhoku Math. J. 31 (1979), 301-307. MR 547645 (81d:12008)
  • [16] C. Walters, Brauer's class number relation, Acta Arith. 35 (1979), 33-40.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 12A35, 12A50, 12A65

Retrieve articles in all journals with MSC: 12A35, 12A50, 12A65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0690061-1
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society