Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)


Quadratic spaces over Laurent extensions of Dedekind domains

Author: Raman Parimala
Journal: Trans. Amer. Math. Soc. 277 (1983), 569-578
MSC: Primary 11E12; Secondary 13C13, 18F25
MathSciNet review: 694376
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be a Dedekind domain in which $ 2$ is invertible. We show in this paper that any isotropic quadratic space over $ R[T,{T^{ - 1}}]$ is isometric to $ {q_1} \perp T{q_2}$ where $ {q_1},{q_2}$ are quadratic spaces over $ R$. We give an example to show that this result does not hold for anisotropic spaces.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11E12, 13C13, 18F25

Retrieve articles in all journals with MSC: 11E12, 13C13, 18F25

Additional Information

PII: S 0002-9947(1983)0694376-2
Keywords: Quadratic spaces, isotropy, Laurent-extensions, Dedekind domains
Article copyright: © Copyright 1983 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia