Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Tangent cones and quasi-interiorly tangent cones to multifunctions


Author: Lionel Thibault
Journal: Trans. Amer. Math. Soc. 277 (1983), 601-621
MSC: Primary 58C20; Secondary 26E25, 90C30
DOI: https://doi.org/10.1090/S0002-9947-1983-0694379-8
MathSciNet review: 694379
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: R. T. Rockafellar has proved a number of rules of subdifferential calculus for nonlocally lipschitzian real-valued functions by investigating the Clarke tangent cones to the epigraphs of such functions. Following these lines we study in this paper the tangent cones to the sum and the composition of two multifunctions. This will be made possible thanks to the notion of quasi-interiorly tangent cone which has been introduced by the author for vector-valued functions in [29] and whose properties in the context of multifunctions are studied. The results are strong enough to cover the cases of real-valued or vector-valued functions.


References [Enhancements On Off] (What's this?)

  • [1] J. P. Aubin, Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions, Math. Res. Center Technical Summary Report No. 2044, Univ. of Wisconsin, Madison, 1980. MR 634239 (83m:58014)
  • [2] C. Berge, Espaces topologiques, fonctions multivoques, Dunod, Paris, 1959. MR 0105663 (21:4401)
  • [3] J. M. Borwein, A Lagrange multipler theorem and a sandwich theorem for convex relations, Math. Scand. 48 (1981), 189-204. MR 631335 (83d:49027)
  • [4] -, Multivalued convexity; a unified approach to equality and inequality constraints, Math. Programming 13 (1977), 163-180.
  • [5] F. H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247-262. MR 0367131 (51:3373)
  • [6] -, A new approach to Lagrange multipliers, Math. Oper. Res. 1 (1976), 165-174. MR 0414104 (54:2209)
  • [7] S. Dolecki, Tangency and differentiation: some applications of convergence theory, Ann. Mat. Pura Appl. (to appear). MR 663973 (83j:58015)
  • [8] P. C. Duong and H. Tuy, Stability, surjectivity, and local invertibility of non differentiable mappings, Acta Math. Vietnam. 3 (1978), 89-105. MR 527479 (80j:49016)
  • [9] S. Gautier, Différentiabilité des multiapplications, Publ. Math. de Pau 5 (1978), 1-17.
  • [10] J. B. Hiriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach spaces, Math. Oper. Res. 4 (1979), 79-97. MR 543611 (80i:58011)
  • [11] J. B. Hiriart-Urruty and L. Thibault, Existence et caractérisation de différentielles généralisées d'applications localement lipschitziennes d'un Banach séparable dans un Banach réflexif séparable, C. R. Acad. Sci. Paris Sér. I. Math. 290 (1980), 1091-1094. MR 587863 (81h:90125)
  • [12] A. D. Ioffe, Nonsmooth analysis: differential calculus of nondifferentiable mappings, Trans. Amer. Math. Soc. 266 (1981), 1-56. MR 613784 (82j:58018)
  • [13] J. L. Kelley, General topology, Springer-Verlag, New York, 1975. MR 0370454 (51:6681)
  • [14] S. Mirica, The contingent and the paratingent as generalized derivatives for vector-valued and set-valued mapping (to appear). MR 684969 (85a:58011)
  • [15] J. P. Penot, Differentiability of relations and differential stability of perturbed optimization problems (to appear). MR 747968 (85i:49041)
  • [16] -, On regularity conditions in mathematical programming, Math. Programming Stud. 19 (1982), 167-199. MR 669731 (84d:90095)
  • [17] J. P. Penot and M. Thera, Polarité des applications convexes à valeurs vectorielles, C. R. Acad. Sci. Paris Sér. I Math. 288 (1979), 419-422. MR 552067 (80i:46014)
  • [18] A. L. Peressini, Ordered topological vector spaces, Harper & Row, New York, 1967. MR 0227731 (37:3315)
  • [19] S. Robinson, Normed convex processes, Trans. Amer. Math. Soc. 174 (1972), 127-140. MR 0313769 (47:2323)
  • [20] -, Regularity and stability for convex multivalued functions, Math. Oper. Res. 1 (1976), 130-143. MR 0430181 (55:3188)
  • [21] R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, N.J., 1970.
  • [22] -, Clarke's tangent cones and the boundaries of closed sets in $ {{\mathbf{R}}^n}$, Nonlinear Anal. 3 (1979), 145-154. MR 520481 (80d:49032)
  • [23] -, Generalized directional derivatives and subgradients of nonconvex functions, Canad. J. Math. 32 (1980), 257-280. MR 571922 (81f:49006)
  • [24] -, Directionally lipschitzian functions and subdifferential calculus, Proc. London Math. Soc. 39 (1979), 331-355. MR 548983 (80j:46070)
  • [25] L. Thibault, Problème de Bolza dans un espace de Banach séparable, C. R. Acad. Sci. Paris Sér. I Math. 282 (1976), 1303-1306. MR 0435980 (55:8931)
  • [26] -, Subdifferentials of compactly lipschitzian vector-valued functions, Ann. Mat. Pura Appl. 125 (1980), 157-192. MR 605208 (82h:58006)
  • [27] -, Mathematical programming and optimal control problems defined by compactly lipschitzian mappings, Sem. Analyse Convex, Exp. no. 10, Montpellier, 1978. MR 521153 (80f:49019)
  • [28] -, On generalized differentials and subdifferentials of Lipschitz vector-valued functions, Nonlinear Analysis Th. Math. Appl. 6 (1982), 1037-1053. MR 678055 (85e:58020)
  • [29] -, Subdifferentials of nonconvex vector-valued functions, J. Math. Anal. Appl. 86 (1982), 319-354. MR 652180 (83g:58005)
  • [30] -, Epidifférentiels de fonctions vectorielles, C. R. Acad. Sci. Paris Sér. I Math. 290 (1980), 87-90. MR 563945 (81f:49015)
  • [31] -, Lagrange multipliers for nonconvex multifunctions (to appear).
  • [32] C. Ursescu, Multifunctions with closed convex graph, Czechoslovak Math. J. 25 (1975), 438-441. MR 0388032 (52:8869)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58C20, 26E25, 90C30

Retrieve articles in all journals with MSC: 58C20, 26E25, 90C30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0694379-8
Keywords: Tangent cones, quasi-interiorly tangent cones, convex and lipschitzian multifunctions, additively separate multifunctions
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society