Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Some examples of square integrable representations of semisimple $ p$-adic groups


Author: George Lusztig
Journal: Trans. Amer. Math. Soc. 277 (1983), 623-653
MSC: Primary 22E50; Secondary 12B27, 20G05
DOI: https://doi.org/10.1090/S0002-9947-1983-0694380-4
MathSciNet review: 694380
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct irreducible representations of the Hecke algebra of an affine Weyl group analogous to Kilmoyer's reflection representation corresponding to finite Weyl groups, and we show that in many cases they correspond to a square integrable representation of a simple $ p$-adic group.


References [Enhancements On Off] (What's this?)

  • [1] I. N. Bernstein and A. V. Zelevinskii, Representations of the groups $ {\text{GL}}(n,F)$ where $ F$ is a local nonarchimedean field, Uspehi Mat. Nauk 31 (1976), 5-70. MR 0425030 (54:12988)
  • [2] A. Borel, Admissible representations of a semisimple group over a local field with fixed vectors under an Iwahori subgroup, Invent. Math. 35 (1976), 233-259. MR 0444849 (56:3196)
  • [3] N. Bourbaki, Groupes et algèbres de Lie, Ch. 4,5,6, Hermann, Paris, 1968. MR 0240238 (39:1590)
  • [4] W. Casselman, Introduction to the theory of admissible representations of $ p$-adic reductive groups, preprint.
  • [5] C. W. Curtis, N. Iwahori and R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with $ (B,N)$pairs, Inst. Hautes Études Sci. Publ. Math. 40 (1972), 81-116. MR 0347996 (50:494)
  • [6] C. Greene, Some partitions associated with a partially ordered set, J. Combin. Theory 20 (1976), 69-79. MR 0398912 (53:2763)
  • [7] N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of $ p$-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 237-280. MR 0185016 (32:2486)
  • [8] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184. MR 560412 (81j:20066)
  • [9] H. Matsumoto, Analyse harmonique dans les systèmes de Tits bornologiques de type affine, Lecture Notes in Math., vol. 590, Springer-Verlag, Berlin and New York, 1977. MR 0579177 (58:28315)
  • [10] F. Rodier, Décomposition de la série principale des groupes réductifs $ p$-adiques, preprint. MR 644842 (83i:22029)
  • [11] A. Silberger, The Langlands quotient theorem for $ p$-adic groups, Math. Ann. 236 (1978), 95-104. MR 0507262 (58:22413)
  • [12] T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173-207. MR 0442103 (56:491)
  • [13] T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (A. Borel, ed.), Lecture Notes in Math., vol. 131, Springer-Verlag, Berlin and New York, 1970. MR 0268192 (42:3091)
  • [14] R. Steinberg, Conjugacy classes in algebraic groups (Notes by V. V. Deodhar), Lecture Notes in Math., vol. 366, Springer-Verlag, Berlin and New York, 1974. MR 0352279 (50:4766)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E50, 12B27, 20G05

Retrieve articles in all journals with MSC: 22E50, 12B27, 20G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0694380-4
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society