Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Isomorphism types in wreath products and effective embeddings of periodic groups


Authors: Kenneth K. Hickin and Richard E. Phillips
Journal: Trans. Amer. Math. Soc. 277 (1983), 765-778
MSC: Primary 20E22; Secondary 03D40, 20F10, 20F50
MathSciNet review: 694387
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For any finitely generated group $ Y,\omega (Y)$ denotes the Turing degree of the word problem of $ Y$. Let $ G$ be any non-Abelian $ 2$-generator group and $ B$ an infinite group generated by $ k \geqslant 1$ elements. We prove that if $ \tau $ is any Turing degree with $ \tau \geqslant 1.{\text{u.b.}}\{ {\omega (G),\omega (B)} \}$ then the unrestricted wreath product $ W = G{\text{Wr}}\,B$ has a $ ( {k + 1} )$-generator subgroup $ H$ with $ \omega (H) = \tau $. If $ B$ is also periodic, then $ W$ has a $ k$-generator subgroup $ H$ such that $ \tau = 1.{\text{u.b.}}\{ {\omega (B),\omega (H)} \}$.

Easy consequences include: $ G{\text{Wr}}\,{\mathbf{Z}}$ has $ {2^{{\aleph _0}}}$ pairwise nonembeddable $ 2$-generator subgroups and if $ B$ is periodic then $ G{\text{Wr}}\,B$ has $ {2^{{\aleph _0}}}$ pairwise nonembeddable $ k$-generator subgroups.

Using similar methods, we prove an effective embedding theorem for embedding countable periodic groups in $ 2$-generator periodic groups.


References [Enhancements On Off] (What's this?)

  • [1] E. S. Golod, On nil-algebras and finitely approximable 𝑝-groups, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 273–276 (Russian). MR 0161878
  • [2] P. Hall, Finiteness conditions for soluble groups, Proc. London Math. Soc. (3) 4 (1954), 419–436. MR 0072873
  • [3] K. K. Hickin, Effective embeddings of residually finite groups (in preparation).
  • [4] K. K. Hickin and R. E. Phillips, Some isomorphism types of $ 2$-generator subgroups in small varieties (in preparation).
  • [5] K. K. Hickin and R. E. Phillips, Non-isomorphic Burnside groups of exponent 𝑝², Canad. J. Math. 30 (1978), no. 1, 180–189. MR 0466328
  • [6] S. C. Jeanes, Counting the periodic groups generated by two finite groups, Bull. London Math. Soc. 12 (1980), no. 2, 133–137. MR 571736, 10.1112/blms/12.2.133
  • [7] Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin-New York, 1977. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89. MR 0577064
  • [8] B. H. Neumann and Hanna Neumann, Embedding theorems for groups, J. London Math. Soc. 34 (1959), 465–479. MR 0163968
  • [9] P. S. Novikov and S. I. Adyan, Infinite periodic groups, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 212-244, 251-524, 709-731; English transl. in Math. USSR-Izv. 2 (1968), 209-236, 241-479, 665-685.
  • [10] Richard E. Phillips, Embedding methods for periodic groups, Proc. London Math. Soc. (3) 35 (1977), no. 2, 238–256. MR 0498874
  • [11] Gerald E. Sacks, Degrees of unsolvability, Princeton University Press, Princeton, N.J., 1963. MR 0186554
  • [12] John S. Wilson, Embedding theorems for residually finite groups, Math. Z. 174 (1980), no. 2, 149–157. MR 592912, 10.1007/BF01293535
  • [13] K. K. Hickin, Isomorphism types of center-by-metabelian groups (in preparation).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20E22, 03D40, 20F10, 20F50

Retrieve articles in all journals with MSC: 20E22, 03D40, 20F10, 20F50


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1983-0694387-7
Keywords: Wreath product, nonembeddable finitely generated groups, periodic groups, effective embedding, word problem
Article copyright: © Copyright 1983 American Mathematical Society