Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)


Small into-isomorphisms between spaces of continuous functions. II

Author: Yoav Benyamini
Journal: Trans. Amer. Math. Soc. 277 (1983), 825-833
MSC: Primary 46E15; Secondary 46B25
MathSciNet review: 694391
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct two compact Hausdorff spaces, $ X$ and $ Y$, so that $ C(X)$ does not embed isometrically into $ C(Y)$, but for each $ \varepsilon > 0$, there is an isomorphism $ {T_\varepsilon }$ from $ C(X)$ into $ C(Y)$ satisfying $ \parallel f\parallel \leqslant \parallel {T_\varepsilon }f\;\parallel \leqslant (1 + \varepsilon)\parallel f\parallel $ for all $ f \in C(X)$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E15, 46B25

Retrieve articles in all journals with MSC: 46E15, 46B25

Additional Information

PII: S 0002-9947(1983)0694391-9
Article copyright: © Copyright 1983 American Mathematical Society