SPECTRAL DECOMPOSITION WITH MONOTONIC SPECTRAL RESOLVENTS

BY

I. ERDELYI AND WANG SHENGWANG

Abstract. The spectral decomposition problem of a Banach space over the complex field entails two kinds of constructive elements: (1) the open sets of the field and (2) the invariant subspaces (under a given linear operator) of the Banach space. The correlation between these two structures, in the framework of a spectral decomposition, is the spectral resolvent concept. Special properties of the spectral resolvent determine special types of spectral decompositions. In this paper, we obtain conditions for a spectral resolvent to have various monotonic properties.

1. Introduction. A spectral decomposition of a Banach space X, by a bounded linear operator $T: X \to X$,

(a) expresses X as a finite linear sum of T-invariant subspaces X_i;

(b) represents T as the sum of its restrictions $T_i = T|X_i$;

(c) localizes the spectrum $\sigma(T_i)$ of each T_i in the closure of a given open set G_i, which intersects the spectrum $\sigma(T)$ of T.

The relationship between the invariant subspaces X_i and the open sets G_i, formalized under the name of spectral resolvent, has been the study of some recent works [1, 2, 8]. In this paper, we investigate conditions under which the spectral resolvent possesses certain specific monotonic properties. Such conditions and subsequence properties infer the corresponding spectral decompositions.

For a bounded linear operator T, which maps an abstract Banach space X over the complex field \mathbb{C} into itself, we use the following notation: spectrum $\sigma(T)$, point spectrum $\sigma_p(T)$, resolvent set $\rho(T)$, the unbounded component of the resolvent set $\rho_\infty(T)$, and the resolvent operator $R(\cdot; T)$. If T has the single valued extension property then, for $x \in X$, $\sigma_T(x)$ denotes the local spectrum, $\rho_T(x)$ the local resolvent set and $x(\cdot)$ the local resolvent function.

For a subspace (closed linear manifold) Y of X, $T|Y$ is the restriction of T to Y and T/Y is the coinduced operator on the quotient space X/Y. $\text{Inv} \ T$ denotes the lattice of the invariant subspaces of X under T. T^* is the conjugate of T. If A is a subset of X then A^\perp denotes the annihilator of A in the dual space X^*. Given a set S, we write \bar{S} for the closure, S^c for the complement, $d(\lambda, S)$ for the distance from a point λ to S, and express by $\text{cov} S$, the collection of all finite open covers of S. \emptyset stands for the family of all open subsets of \mathbb{C}. An open set Δ is called a Cauchy
domain if it has a finite number of components and the boundary \(\Gamma = \partial \Delta \) is a
positively oriented finite system of closed, nonintersecting, rectifiable Jordan curves.

Throughout this paper \(T \) is a bounded linear operator mapping the underlying
Banach space \(X \) into itself.

1.1. Definition. A spectral decomposition of \(X \) by \(T \) is a finite system \(\{(G_i, X_i)\} \)
\(\subset \emptyset \times \text{Inv} \, T \), satisfying the following conditions:
(i) \(\{G_i\} \subseteq \text{cov}(T) \);
(ii) \(X = \sum_i X_i \);
(iii) \(\sigma(T \mid X_i) \subseteq \overline{G_i} \), for all \(i \).

1.2. Definition [1]. A map \(E : \emptyset \to \text{Inv} \, T \) is called a spectral resolvent of \(T \) if it
satisfies the following conditions:
(I) \(E(\emptyset) = \{0\} \);
(II) for any \(\{G_i\} \subseteq \text{cov}(T) \), \(\{(G_i, E(G_i))\} \) is a spectral decomposition of \(X \) by \(T \).

Although the spectral resolvent fails to be unique, the properties they have in
common characterize specific types of spectral decompositions. In this vein, we
mention that an operator \(T \) having a spectral resolvent possesses the single valued
extension property [1] and, moreover, it is decomposable [8] in the sense of Foiaş [4].

The following types of invariant subspaces will be involved in our study.

1.3. Definition [5]. A subspace \(Y \) of \(X \) is said to be analytically invariant under \(T \)
if, for every function \(f : D \to X \) analytic on some open \(D \subset C \), the condition
\[
(\lambda - T)f(\lambda) \in Y \quad \text{on} \quad D
\]
implies that \(f(\lambda) \in Y \) on \(D \).

An analytically invariant subspace is also invariant under \(T [6] \).

1.4. Definition [4]. \(Y \in \text{Inv} \, T \) is said to be a spectral maximal space of \(T \) if, for
any \(Z \in \text{Inv} \, T \), the inclusion \(\sigma(T \mid Z) \subseteq \sigma(T \mid Y) \) implies that \(Z \subseteq Y \).

If \(T \) has the single valued extension property then, for any set \(S \subset C \),
\[
X_T(S) = \{ x \in X : \sigma_T(x) \subset S \}
\]
is a linear manifold in \(X \). If \(T \) is a decomposable operator then, for any \(G \in \emptyset \),
\(X_T(G) \) is an analytically invariant subspace under \(T [5] \) and, for any closed \(F \subset C \),
\(X_T(F) \), in particular \(X_T(G) \), is a spectral maximal space of \(T [4] \). Moreover, for a
decomposable \(T \), we have
\[
(1.1) \quad \overline{G \cap \sigma(T)} \subseteq \sigma(T \mid X_T(G)) \subseteq \overline{G \cap \sigma(T)}.
\]

1.5. Definition [9]. \(Y \in \text{Inv} \, T \) is said to be a \(T \)-absorbent space if, for every
\(y \in Y \) and all \(\lambda \in \sigma(T \mid Y) \), the equation \((\lambda - T)x = y \) has all solutions \(x \), if any,
contained in \(Y \).

If \(T \) has the single valued extension property, then every \(T \)-absorbent space is
analytically invariant under \(T \).

1.6. Proposition [2]. Let \(\{(G_i, X_i)\}_{i=1,2} \) be a spectral decomposition of \(X \) by \(T \) in
terms of \(T \)-absorbent spaces \(X_1 \) and \(X_2 \). Then
\[
\sigma(T \mid X_1 \cap X_2) \subseteq \sigma(T \mid X_1) \cap \sigma(T \mid X_2).
\]
1.7. Proposition. If, for \(X_1, X_2 \in \text{Inv } T, X = X_1 + X_2 \) then
\[
\sigma(T) \subset \sigma(T \mid X_1) \cup \sigma(T \mid X_2) \cup \sigma_p(T).
\]
In particular, if \(T \) has the single valued extension property, then
\[
\sigma(T) \subset \sigma(T \mid X_1) \cup \sigma(T \mid X_2).
\]

Proof. Let \(\lambda \in \rho(T \mid X_1) \cap \rho(T \mid X_2) - \sigma_p(T) \) and \(x \in X \). There is a representation for \(x, x = x_1 + x_2 \) with \(x_i \in X_i, i = 1, 2 \). For \(y_i = R(\lambda; T \mid X_i)x_i, i = 1, 2 \), and \(y = y_1 + y_2 \) we have
\[
(\lambda - T)y = (\lambda - T)y_1 + (\lambda - T)y_2 = x_1 + x_2 = x
\]
and hence \(\lambda - T \) is surjective. Furthermore, since \(\lambda \notin \sigma_p(T) \), we have \(\lambda \in \rho(T) \). The last statement of the proposition follows from [3, Theorem 2]. \(\square \)

Property (1.1) of \(X_T(\cdot) \) has an interesting variant in terms of a spectral resolvent \(T \), expressed by [8, Proposition 16]. For completeness, we recall that property and provide it with a shorter proof.

1.8. Proposition. If \(T \) has a spectral resolvent \(E \) then, for any \(G \in \mathcal{G} \),
\[
G \cap \sigma(T) \subset \sigma[T \mid E(G)].
\]

Proof. Let \(\lambda \in G \cap \sigma(T) \) be given and let \(H \in \mathcal{G} \) be such that \((G, H) \in \text{cov } \sigma(T) \) with \(\lambda \notin H \). Then \(X = E(G) + E(H) \) and Proposition 1.7 implies
\[
\sigma(T) \subset \sigma[T \mid E(G)] \cup \sigma[T \mid E(H)].
\]
Since \(\lambda \in [G \cap \sigma(T)] - H \), it follows from (1.4) that \(\lambda \in \sigma[T \mid E(G)] \) and hence inclusion (1.3) holds. \(\square \)

If \(T \) has a spectral resolvent \(E \), then \(T \) has a maximal spectral resolvent \(E_m \) in the sense that, for every \(G \in \mathcal{G} \) and all spectral resolvents \(E \) of \(T \),
\[
E(G) \subset E_m(G) = X_T(G).
\]
Since, clearly \(X_T(G) \subset X_T(G) \), where the inclusion may be proper, some spectral resolvents \(E \) may be such that
\[
X_T(G) \subset E(G) \subset X_T(G) \quad \text{for all } G \in \mathcal{G}.
\]

Condition (1.5) endows \(E \) with some remarkable properties, which will be the topic of the following sections.

2.1. Definition. A spectral resolvent \(E \) is said to be monotonic if \(G_1, G_2 \in \mathcal{G} \) and \(G_1 \subset G_2 \) imply that \(E(G_1) \subset E(G_2) \).

Note that (1.5) is a sufficient condition for a spectral resolvent \(E \) of \(T \) to be monotonic. In fact, if the open sets \(G_1, G_2 \) are such that \(G_1 \subset G_2 \), then (1.5) implies the inclusions
\[
E(G_1) \subset X_T(G_1) \subset X_T(G_2) \subset E(G_2).
\]
2.2. **Theorem.** Let T have a spectral resolvent E. If for any pair $G_1, G_2 \in \emptyset$, E satisfies condition

\[(2.1) \quad \sigma[T \mid E(G_1) \cap E(G_2)] \subset \overline{G_1} \cap \overline{G_2} \]

then property (1.5) holds and E is monotonic.

Proof. Given $G_1 \in \emptyset$, let $x \in X_T(G_1)$. Choose $G_2 \in \emptyset$ such that $\{G_1, G_2\} \in \text{cov} \sigma(T)$ and $\sigma_T(x) \cap G_2 = \emptyset$ (this is possible because $\sigma_T(x)$ is closed and is contained in G_1). To avoid repetitions, we divide the remainder of the proof in two parts.

Part A. There is a representation of x,

\[x = x_1 + x_2 \quad \text{with } x_i \in E(G_i), i = 1, 2.\]

In view of some elementary properties, the local spectra of x_1 and x_2 are contained in some pertinent sets

\[(2.2) \quad \sigma_T(x_1) \subset \sigma_T(x) \cup (\overline{G_1} \cap \overline{G_2}), \quad \sigma_T(x_2) \subset \overline{G_1} \cap \overline{G_2}.\]

For $\lambda \in \rho_T(x) \cap (\overline{G_1} \cap \overline{G_2})^c = H$, we have $x(\lambda) = x_1(\lambda) + x_2(\lambda)$. Let Δ be a Cauchy domain with boundary Γ such that $\sigma_T(x) \subset \Delta$ and $\overline{\Delta} \subset (\overline{G_1} \cap \overline{G_2})^c$. The functional calculus gives

\[(2.3) \quad x = \frac{1}{2\pi i} \int_{\Gamma} x(\lambda) \, d\lambda = \frac{1}{2\pi i} \int_{\Gamma} x_i(\lambda) \, d\lambda.\]

For every $\lambda_0 \in \Gamma$, there is a neighborhood $V \subset H$ of λ_0 and there are functions $f_i: V \to E(G_i) \ (i = 1, 2)$ analytic on V such that

\[(2.4) \quad x_i(\lambda) = f_1(\lambda) + f_2(\lambda) \quad \text{on } V.\]

It follows from

\[(\lambda - T) x_1(\lambda) = x_1 \quad \text{on } \rho_T(x_1),\]

that the function $g: V \to E(G_1) \cap E(G_2)$ defined by

\[g(\lambda) = x_1 - (\lambda - T)f_1(\lambda) = (\lambda - T)f_2(\lambda)\]

is analytic on V.

Part B. Since $V \subset (\overline{G_1} \cap \overline{G_2})^c \subset \rho[T \mid E(G_1) \cap E(G_2)]$, the function $h: V \to E(G_1) \cap E(G_2)$ defined by

\[h(\lambda) = R[\lambda; T \mid E(G_1) \cap E(G_2)] g(\lambda)\]

is analytic on V. We have

\[(\lambda - T)h(\lambda) = g(\lambda) = (\lambda - T)f_2(\lambda) \quad \text{on } V\]

and hence the single valued extension property of T implies that

\[f_2(\lambda) = h(\lambda) \in E(G_1) \cap E(G_2) \subset E(G_1) \quad \text{on } V.\]

Thus, by (2.4) $x_i(\lambda) \in E(G_i)$ on V and, in particular, $x_1(\lambda_0) \in E(G_1)$. Since λ_0 is arbitrary on Γ, it follows from (2.3) that $x \in E(G_1)$. Thus, $X_T(G_1) \subset E(G_1)$ and this establishes (1.5). Consequently, E is a monotonic spectral resolvent. \qed
2.3. Corollary. Let E be a spectral resolvent of T. If for each $G \subseteq \emptyset$, any one of the following conditions holds, then E is monotone.

1. $\sigma[T^* | E(G)^{-1}] \subseteq G^c$;
2. $\sigma[T/E(G)] \subseteq G^c$;
3. $E(G)$ is analytically invariant;
4. $E(G)$ is T-absorbent.

Proof. Conditions (1)–(3) are equivalent [1]. Moreover, since T has the single valued extension property, every T-absorbent space is analytically invariant under T. Thus, it suffices to prove the statement of the corollary under hypothesis (4). Given $G_1, G_2 \subseteq \emptyset$, Proposition 1.6 implies

$$\sigma[T \cap E(G_1) \cap E(G_2)] \subseteq \sigma[T \cap E(G_1)] \cap \sigma[T \cap E(G_2)] \subseteq \overline{G_1} \cap \overline{G_2}.$$

Now, Theorem 2.2 concludes the proof.

2.4. Corollary. Let T have a spectral resolvent E. If $\sigma(T)$ has empty interior and $\rho_\infty(T) = \rho(T)$ (in particular, if $\sigma(T)$ is contained on an open Jordan curve), then E is monotone.

Proof. It suffices to show that for every $G \subseteq \emptyset$, $E(G)$ is analytically invariant under T. Let $f: D \to \mathbb{C}$ be analytic on an open $D \subseteq \mathbb{C}$ such that for every $G \subseteq \emptyset$,

$$\frac{(\lambda - T)f(\lambda)}{\lambda - T} \in E(G) \text{ on } D.$$

Since $\sigma(T)$ has empty interior, $D - \sigma(T)$ is a nonempty open set. Then, since $\rho_\infty(T) = \rho(T)$, we have

$$f(\lambda) = R(\lambda; T)(\lambda - T)f(\lambda) \in E(G) \text{ for all } \lambda \in D - \sigma(T)$$

and $f(\lambda) \in E(G)$ on D, by analytic continuation.

As a summary of this section, the “spectral inclusion property” (1.5) and the “spectral invariance property” (2.1) proved to be sufficient conditions for a spectral resolvent E to be monotone. By strengthening the monotone spectral resolvent concept, (1.5) is heightened to a necessary and sufficient condition for the validity of the new monotone attribute of a spectral resolvent.

3. Strongly monotone spectral resolvents.

3.1. Definition. A spectral resolvent E is said to be strongly monotone if $G, G_1, G_2 \subseteq \emptyset$ and $\overline{G_1} \cap \overline{G_2} \subseteq G$ imply $E(G_1) \cap E(G_2) \subseteq E(G)$.

Evidently, every strongly monotone spectral resolvent is monotone. As an example, if T has a spectral resolvent E then its maximal spectral resolvent E_m is strongly monotone. Indeed, $G, G_1, G_2 \subseteq \emptyset$ and $\overline{G_1} \cap \overline{G_2} \subseteq G$ imply

$$E_m(G_1) \cap E_m(G_2) = X_T(\overline{G_1} \cap \overline{G_2}) = X_T(\overline{G_1} \cap \overline{G_2}) \subseteq X_T(G) = E_m(G).$$

3.2. Theorem. Let E be a spectral resolvent of T. E is strongly monotone if and only if (1.5) holds for every $G \subseteq \emptyset$.

Proof. We only have to prove the “only if” part. Assume that E is strongly monotone. Given $G \subseteq \emptyset$, let $x \in X_T(G)$. Let $\{G_1, G_2\} \subseteq \text{cov } \sigma(T)$ be such that

$$\sigma_T(x) \subseteq G_1 \subseteq \overline{G} \subseteq G \text{ and } \sigma_T(x) \cap \overline{G_2} = \emptyset.$$
Follow verbatim Part A of the proof of Theorem 2.2. Let $K \in \emptyset$ be such that
\[\overline{G}_1 \cap \overline{G}_2 \subset K \subset \overline{K} \subset G, \quad \overline{K} \cap \sigma_T(x) = \emptyset \quad \text{and} \quad V \cap \overline{K} = \emptyset. \]
E being strongly monotone, we have $g(\lambda) \in E(K)$ on V. The function $h: V \to E(K)$
defined by $h(\lambda) = R[\lambda; T|E(K)]g(\lambda)$ is analytic on V and
\[(\lambda - T)h(\lambda) = (\lambda - T)f_2(\lambda) \quad \text{on} \ V. \]
By the single valued extension property of T,
\[f_2(\lambda) = h(\lambda) \in E(K) \quad \text{on} \ V. \]
E being monotone, we have
\[x_1(\lambda) \in E(G_1) + E(K) \subset E(G) \quad \text{on} \ V \]
and, in particular, $x_i(\lambda_0) \in E(G)$. Since λ_0 is arbitrary on Γ, it follows from (2.3)
that $x \in E(G)$. Since x is arbitrary in $X_T(G)$, the proof concludes with $X_T(G) \subset E(G)$. \square

Another characterization of a strongly monotone spectral resolvent involves the
range of the local resolvent function.

3.3. THEOREM. Let E be a spectral resolvent of T. The following assertions are
equivalent:

(i) E is strongly monotone;
(ii) $G_1, G_2 \in \emptyset$, $\overline{G}_1 \subset G_2$ and $x \in E(G_1)$ imply \{x(\lambda): \lambda \in \rho_T(x)\} \subset E(G_2).

PROOF. (i) \Rightarrow (ii): Let $G_1, G_2 \in \emptyset$ be such that $\overline{G}_1 \subset G_2$. By Theorem 3.2, we have
\[E(G_1) \subset X_T(\overline{G}_1) \subset X_T(G_2) \subset E(G_2). \]
Let $x \in E(G_1)$ be given. Then $x \in X_T(\overline{G}_1)$ and since $X_T(\overline{G}_1)$ is a spectral
maximal space of T, (3.1) implies
\[\{x(\lambda): \lambda \in \rho_T(x)\} \subset X_T(\overline{G}_1) \subset E(G_2). \]

(ii) \Rightarrow (i): Let $G \subset C$ be an open set and let $x \in X_T(G)$. Choose $G_1 \in \emptyset$ such that
\[\sigma_T(x) \subset G_1 \subset \overline{G}_1 \subset G. \]
Let $G_2 \in \emptyset$ satisfy conditions
\[\sigma(x) \cap G_1 = \emptyset, \quad \sigma(x) \cap G_2 = \emptyset. \]
Then x has a representation $x = x_1 + x_2$ with $x_i \in E(G_i)$, $i = 1, 2$. As obtained in
an earlier proof, we have (2.2)
\[\sigma_T(x_1) \subset \sigma_T(x) \cup (\overline{G}_1 \cap \overline{G}_2), \quad \sigma_T(x_2) \subset \overline{G}_1 \cap \overline{G}_2. \]
Let Δ be a Cauchy domain with boundary $\Gamma \subset \rho_T(x) \cap (\overline{G}_1 \cap \overline{G}_2)^c$, such that
\[\sigma_T(x) \subset \Delta \quad \text{and} \quad \overline{\Delta} \cap (\overline{G}_1 \cap \overline{G}_2) = \emptyset. \]
Then
\[x = \frac{1}{2\pi i} \int_{\Gamma} x(\lambda) \, d\lambda = \frac{1}{2\pi i} \int_{\Gamma} x_1(\lambda) \, d\lambda. \]
Since $x_1 \in E(G_1)$ and $\overline{G}_1 \subset G$, hypothesis (ii) implies
\[\{x_1(\lambda): \lambda \in \rho_T(x)\} \subset E(G). \]
Then, by (3.2), $x \in E(G)$ and hence $X_T(G) \subset E(G)$. Now, Theorem 3.2 concludes
the proof. \square
A further characterization of a strongly monotonic spectral resolvent can be obtained in terms of a localization property of the spectral resolvent. The following definition generalizes the concept of “almost localized spectrum” [10].

3.4. Definition. A spectral resolvent £ is said to be almost localized if $G, G_1, G_2 \in \emptyset$ and $\overline{G} \subseteq G_1 \cup G_2$ imply $E(G) \subseteq E(G_1) + E(G_2)$.

The following result is due to Radjabalipour [7].

3.5. Proposition. If T is decomposable then, for every closed set F and $(H_1, H_2) \in \text{cov } F$, the following inclusion holds:

$$X_T(F) \subseteq X_T(\overline{H_1}) + X_T(\overline{H_2}).$$

Since, for every open cover (H_1, H_2) of F, there is $(G_1, G_2) \in \text{cov } F$ with $\overline{H_1} \subseteq G_1$ and $\overline{H_2} \subseteq G_2$, property (3.3) can be expressed as

$$X_T(F) \subseteq X_T(G_1) + X_T(G_2).$$

3.6. Theorem. Let T have a spectral resolvent E. Then E is strongly monotonic if and only if E is almost localized.

Proof. In view of Theorem 3.2, we have to show that the following conditions are equivalent:

(i) $X_T(G) \subseteq E(G)$ for all $G \in \emptyset$;

(ii) $G, G_1, G_2 \in \emptyset$ and $\overline{G} \subseteq G_1 \cup G_2$ imply $E(G) \subseteq E(G_1) + E(G_2)$.

(i) \Rightarrow (ii): Let $G, G_1, G_2 \in \emptyset$ be such that $\overline{G} \subseteq G_1 \cup G_2$. Since T is decomposable, (3.4) implies

$$E(G) \subseteq X_T(\overline{G}) \subseteq X_T(G_1) + X_T(G_2) \subseteq E(G_1) + E(G_2).$$

(ii) \Rightarrow (i): Given $G \in \emptyset$, let $x \in X_T(G)$. Further, let H_0 be a relatively compact, open neighborhood of $\sigma(T)$. Then

$$x \in X = E(H_0) \quad \text{and} \quad \sigma_T(x) \subseteq \sigma(T) \subseteq H_0.$$

Let ε be arbitrary, with $0 < \varepsilon < \sup_{\lambda \in \sigma(T)} d[\lambda, \sigma_T(x)]$. Define the open sets

$$H = \{ \lambda \in \mathbb{C}: d[\lambda, \sigma_T(x)] < \varepsilon \}, \quad H' = \left\{ \lambda \in \mathbb{C}: d(\lambda, H_0) < \frac{\varepsilon}{6} \right\}.$$

For every $\lambda \in \overline{H'} \cap H^c$, let $D_\lambda = \{ \mu \in \mathbb{C}: |\mu - \lambda| < \varepsilon/3 \}$. Then $\{ D_\lambda : \lambda \in \overline{H'} \cap H^c \}$ is an open cover of $\overline{H'} \cap H^c$. Since $\overline{H'} \cap H^c$ is compact, there is a finite collection $\{ \lambda_1, \lambda_2, \ldots, \lambda_n \} \subseteq \overline{H'} \cap H^c$ such that

$$\overline{H'} \cap H^c \subseteq \bigcup_{i=1}^{n} D_{\lambda_i}, \quad \text{where } D_{\lambda} = D_{\lambda_i} \text{ for } \lambda = \lambda_i.$$

For $1 \leq i \leq n$, define

$$K_i = \left\{ \mu \in \mathbb{C}: |\mu - \lambda_i| < \frac{2}{3} \varepsilon \right\}, \quad \Delta_i = \left\{ \mu \in \mathbb{C}: |\mu - \lambda_i| < \frac{\varepsilon}{2} \right\}.$$

Clearly, $K_i \cap \sigma_T(x) = \emptyset$, $1 \leq i \leq n$. Put

$$H_i = \left\{ \lambda \in \mathbb{C}: d(\lambda, H_0) < \frac{\varepsilon}{9n} \right\} - \Delta_i.$$
It is easy to see that $\overline{H}_1 \cap \overline{D}_1 = \emptyset$. Since

$$\overline{H}_0 \subset H_1 \cup \overline{\Delta}_1 \subset H_1 \cup K_1,$$

we have

$$x \in E(H_0) \subset E(H_1) + E(K_1).$$

For $G_1 = H_1$, $G_2 = K_1$, follow Part A of the proof of Theorem 2.2. Note that the boundary Γ of the Cauchy domain Δ in Part A, verifies inclusions

$$\Gamma \subset \rho_\infty[T | E(K_1)] \subset \rho[T | E(H_1) \cap E(K_1)].$$

The function $h: V \to E(H_1) \cap E(K_1)$, defined by

$$h(\lambda) = R[\lambda; T | E(H_1) \cap E(K_1)] g(\lambda)$$

verifies equality

$$(\lambda - T) h(\lambda) = (\lambda - T) f_2(\lambda) \quad \text{on } V,$$

which implies

$$f_2(\lambda) = h(\lambda) \in E(H_1) \cap E(K_1) \quad \text{on } V.$$

Thus, with reference to Part A, (2.4) implies that $x_1(\lambda) \in E(H_1)$ on V, and hence $x_1(\lambda_0) \in E(H_1)$. $\lambda_0 \in \Gamma$ being arbitrary, $x \in E(H_1)$ by (2.3).

Inductively, define

$$H_k = \{ \lambda \in C: d(\lambda, H_{k-1}) < \varepsilon/9n \} - \overline{\Delta}, \quad 1 \leq k \leq n.$$

Then $\{H_k, K_k\}$ covers \overline{H}_{k-1} and $\overline{H}_k \cap \overline{D_i} = \emptyset$, $1 \leq i \leq k$. In view of hypothesis (ii), $E(H_{k-1}) \subset E(H_k) + E(K_k)$, and the hypothesis $x \in E(H_{k-1})$ of the induction gives $x \in E(H_k) + E(K_k)$. As for $k = 1$, by using Part A of the proof of Theorem 2.2 and a conveniently defined function $h: V \to E(H_k) \cap E(K_k)$, we obtain $x \in E(H_k)$. Thus, by the inductive process, we obtain an open set H_n with the properties

$$x \in E(H_n) \quad \text{and} \quad \overline{H}_n \subset H' - \left(\bigcup_{i=1}^n \overline{D}_i \right) \subset H.$$

E being monotonic, $E(H_n) \subset E(H)$ and hence $x \in E(H)$. Since ε is arbitrarily small, we may choose it such that $\overline{H} \subset G$. Then $E(H) \subset E(G)$ and hence $x \in E(G)$. Since $x \in \mathcal{X}_T(G)$ is arbitrary, we obtain $\overline{\mathcal{X}_T(G)} \subset E(G)$. \qed

REFERENCES

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PENNSYLVANIA 19122

DEPARTMENT OF MATHEMATICS, NANJING UNIVERSITY, NANJING, CHINA