Spectral decomposition with monotonic spectral resolvents

Authors:
I. Erdélyi and Sheng Wang Wang

Journal:
Trans. Amer. Math. Soc. **277** (1983), 851-859

MSC:
Primary 47A10; Secondary 47A15

DOI:
https://doi.org/10.1090/S0002-9947-1983-0694393-2

MathSciNet review:
694393

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The spectral decomposition problem of a Banach space over the complex field entails two kinds of constructive elements: (1) the open sets of the field and (2) the invariant subspaces (under a given linear operator) of the Banach space. The correlation between these two structures, in the framework of a spectral decomposition, is the spectral resolvent concept. Special properties of the spectral resolvent determine special types of spectral decompositions. In this paper, we obtain conditions for a spectral resolvent to have various monotonic properties.

**[1]**I. Erdélyi,*Spectral resolvents*, Operator theory and functional analysis (Papers, Summer Meeting, Amer. Math. Soc., Providence, R.I., 1978) Res. Notes in Math., vol. 38, Pitman, Boston, Mass.-London, 1979, pp. 51–70. MR**579021****[2]**I. Erdélyi,*Monotonic properties of some spectral resolvents*, Libertas Math.**1**(1981), 117–124. MR**623367****[3]**James K. Finch,*The single valued extension property on a Banach space*, Pacific J. Math.**58**(1975), no. 1, 61–69. MR**0374985****[4]**Ciprian Foiaş,*Spectral maximal spaces and decomposable operators in Banach space*, Arch. Math. (Basel)**14**(1963), 341–349. MR**0152893**, https://doi.org/10.1007/BF01234965**[5]**Şt. Frunză,*The single-valued extension property for coinduced operators*, Rev. Roumaine Math. Pures Appl.**18**(1973), 1061–1065. MR**0324445****[6]**R. Lange,*Strongly analytic subspaces*, Operator theory and functional analysis (Papers, Summer Meeting, Amer. Math. Soc., Providence, R.I., 1978) Res. Notes in Math., vol. 38, Pitman, Boston, Mass.-London, 1979, pp. 16–30. MR**579018****[7]**Mehdi Radjabalipour,*Equivalence of decomposable and 2-decomposable operators*, Pacific J. Math.**77**(1978), no. 1, 243–247. MR**507632****[8]**G. W. Shulberg,*Spectral resolvents and decomposable operators*, Operator theory and functional analysis (Papers, Summer Meeting, Amer. Math. Soc., Providence, R.I., 1978) Res. Notes in Math., vol. 38, Pitman, Boston, Mass.-London, 1979, pp. 71–84. MR**579022****[9]**F.-H. Vasilescu,*Residually decomposable operators in Banach spaces*, Tôhoku Math. J. (2)**21**(1969), 509–522. MR**0275208**, https://doi.org/10.2748/tmj/1178242896**[10]**F.-H. Vasilescu,*On the residual decomposability in dual spaces*, Rev. Roumaine Math. Pures Appl.**16**(1971), 1573–1587. MR**0306965**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
47A10,
47A15

Retrieve articles in all journals with MSC: 47A10, 47A15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1983-0694393-2

Article copyright:
© Copyright 1983
American Mathematical Society