Spectral decomposition with monotonic spectral resolvents

Authors:
I. Erdélyi and Sheng Wang Wang

Journal:
Trans. Amer. Math. Soc. **277** (1983), 851-859

MSC:
Primary 47A10; Secondary 47A15

DOI:
https://doi.org/10.1090/S0002-9947-1983-0694393-2

MathSciNet review:
694393

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The spectral decomposition problem of a Banach space over the complex field entails two kinds of constructive elements: (1) the open sets of the field and (2) the invariant subspaces (under a given linear operator) of the Banach space. The correlation between these two structures, in the framework of a spectral decomposition, is the spectral resolvent concept. Special properties of the spectral resolvent determine special types of spectral decompositions. In this paper, we obtain conditions for a spectral resolvent to have various monotonic properties.

**[1]**I. Erdelyi,*Spectral resolvents*, Operator Theory and Functional Analysis, Research Notes in Math., no. 38, Pitman Advanced Publishing Program, San Francisco, London, Melbourne, 1979, pp. 51-70. MR**579021 (81h:47033)****[2]**-,*Monotonic properties of some spectral resolvents*, Libertas Math.**1**(1981), 117-148. MR**623367 (82h:47031)****[3]**J. K. Finch,*The single valued extension property on a Banach space*, Pacific J. Math.**58**(1975), 61-69. MR**0374985 (51:11181)****[4]**C. Foiaş,*Spectral maximal spaces and decomposable operators in Banach spaces*, Arch. Math. (Basel)**14**(1963), 341-349. MR**0152893 (27:2865)****[5]**S. Frunza,*The single-valued extension property for coinduced operators*, Rev. Roumaine Math. Pures Appl.**18**(1973), 1061-1065. MR**0324445 (48:2797)****[6]**R. Lange,*Strongly analytic subspaces*, Operator Theory and Functional Analysis, Research Notes in Math., no. 38, Pitman Advanced Publishing Program, San Francisco, London, Melbourne, 1979, pp. 16-30. MR**579018 (81f:47007)****[7]**M. Radjabalipour,*Equivalence of decomposable and*-*decomposable operators*, Pacific J. Math.**77**(1978), 243-247. MR**507632 (80c:47032)****[8]**G. W. Shulberg,*Spectral resolvents and decomposable operators*, Operator Theory and Functional Analysis, Research Notes in Math., no. 38, Pitman Advanced Publishing Program, San Francisco, London, Melbourne, 1979, pp. 71-84. MR**579022 (81g:47034)****[9]**F. H. Vasilescu,*Residually decomposable operators in Banach spaces*, Tôhoku Math. J.**21**(1969), 509-522. MR**0275208 (43:965)****[10]**-,*On the residual decomposability in dual spaces*, Rev. Roumaine Math. Pures Appl.**16**(1971), 1573-1578. MR**0306965 (46:6086)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
47A10,
47A15

Retrieve articles in all journals with MSC: 47A10, 47A15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1983-0694393-2

Article copyright:
© Copyright 1983
American Mathematical Society