Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Bounds for integral solutions of diagonal cubic equations


Author: Ka Hin Leung
Journal: Trans. Amer. Math. Soc. 278 (1983), 183-195
MSC: Primary 11D25; Secondary 11P55
DOI: https://doi.org/10.1090/S0002-9947-1983-0697069-0
MathSciNet review: 697069
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It was proved by Davenport [3] that for the nonzero integral $ {\lambda_i}$ the equation $ {\lambda_1}x_1^3 + \cdots + {\lambda_8}x_8^3 = 0$ always has a nontrivial integral solution. In this paper, we investigate the bounds of nontrivial integral solutions in terms of $ {\lambda_1}, \ldots ,{\lambda_8}$.


References [Enhancements On Off] (What's this?)

  • [1] H. Davenport, On Waring's problem for cubes, Acta Math. 71 (1939), 123-143. MR 0000026 (1:5c)
  • [2] -, Indefinite quadratic forms in many variables, Mathematika 3 (1956), 81-101. MR 0085303 (19:19a)
  • [3] -, Cubic forms in $ 32$ variables, Philos. Trans. Roy. Soc. London Ser. A 251 (1959), 193-232. MR 0105394 (21:4136)
  • [4] -, Analytic methods for Diophantine equations and Diophantine inequalities, Ann Arbor Publ., Ann Arbor, Mich., 1963. MR 0159786 (28:3002)
  • [5] H. Davenport and H. Heilbronn, On indefinite quadratic forms in five variables, J. London Math. Soc. 21 (1946), 185-193. MR 0020578 (8:565e)
  • [6] H. Davenport and K. F. Roth, The solubility of certain Diophantine inequalities, Mathematika 2 (1955), 81-96. MR 0075989 (17:829e)
  • [7] I. Danicic, The solubility of certain Diophantine inequalities, Proc. London Math. Soc. (3) 8 (1958), 161-176. MR 0096636 (20:3119)
  • [8] D. J. Lewis, Cubic congruences, Michigan Math. J. 4 (1957), 85-95. MR 0084013 (18:793d)
  • [9] J. Pitman and D. Ridout, Diagonal cubic equations and inequalities, Proc. Roy. Soc. Ser. A 297 (1967), 476-502. MR 0215785 (35:6620)
  • [10] T. Nagell, Introduction to number theory, Wiley, New York, 1951. MR 0043111 (13:207b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11D25, 11P55

Retrieve articles in all journals with MSC: 11D25, 11P55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0697069-0
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society