Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Stop rule inequalities for uniformly bounded sequences of random variables


Authors: Theodore P. Hill and Robert P. Kertz
Journal: Trans. Amer. Math. Soc. 278 (1983), 197-207
MSC: Primary 60G40; Secondary 60G42, 62L15
DOI: https://doi.org/10.1090/S0002-9947-1983-0697070-7
MathSciNet review: 697070
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ {X_{0}},{X_1},\ldots$ is an arbitrarily-dependent sequence of random variables taking values in $ [0,1]$ and if $ V({X_0},{X_1},\ldots)$ is the supremum, over stop rules $ t$, of $ E{X_t}$, then the set of ordered pairs $ \{ (x,y):x = V({X_0},{X_1},\ldots,{X_n})$ and $ y = E({\max_{j\, \leqslant \,n}}{X_j})$ for some $ {X_0},\ldots,{X_n}\} $ is precisely the set

$\displaystyle {C_n} = \{ (x,y):x \leqslant y \leqslant x\,( {1 + n\,(1 - {x^{1/n}})} );0 \leqslant x \leqslant 1\} ;$

and the set of ordered pairs $ \{ (x,y):x = V({X_{0}},{X_1},\ldots)$ and $ y = E({\sup_n}\;{X_n})$ for some $ {X_0},{X_1},\ldots\} $ is precisely the set

$\displaystyle C = \bigcup\limits_{n = 1}^\infty {{C_n}} .$

As a special case, if $ {X_0},{X_1},\ldots$ is a martingale with $ E{X_0} = x$, then $ E({\max_{j \leqslant n}} X) \leqslant x + nx(1 - {x^{1\,/\,n}})$ and $ E({\sup_n}\;{X_n}) \leqslant x - x\ln \;x$, and both inequalities are sharp.

References [Enhancements On Off] (What's this?)

  • [1] D. Blackwell and L. E. Dubins, A converse to the dominated convergence theorem, Illinois J. Math. 7 (1963), 508-514. MR 0151572 (27:1557)
  • [2] L. Breiman, Probability, Addison-Wesley, Reading, Mass, 1968. MR 0229267 (37:4841)
  • [3] A. Brunel and U. Krengel, Parier avec un prophete dans le cas d'un processus sous-additif, C. R. Acad. Sci. Paris Ser. A-B 288 (1979), 57-60. MR 522020 (80b:60062)
  • [4] Y. Chow, H. Robbins and D. Siegmund, Great expectations: the theory of optimal stopping, Houghton Mifflin, Boston, Mass., 1971. MR 0331675 (48:10007)
  • [5] J. L. Doob, Stochastic processes, Wiley, New York, 1953. MR 0058896 (15:445b)
  • [6] L. E. Dubins and J. Pitman, A maximal inequality for skew fields, Z. Wahrsch. Verw. Gebiete 52 (1980), 219-227. MR 576883 (81f:60027)
  • [7] T. Hill, Prophet inequalities and order selection in optimal stopping problems, Proc. Amer. Math. Soc. 88 (1983), 131-137. MR 691293 (84d:60068)
  • [8] T. Hill and R. Kertz, Ratio comparisons of supremum and stop rule expectations, Z. Wahrsch. Verw. Gebiete 56 (1981), 283-285. MR 618276 (82h:60078)
  • [9] -, Additive comparisons of stop rule and supremum expectations of uniformly bounded independent random variables, Proc. Amer. Math. Soc. 83 (1981), 582-585. MR 627697 (82j:60071)
  • [10] -, Comparisons of stop rule and supremum expectations of i.i.d. random variables, Ann. Probab. 10 (1982), 336-345. MR 647508 (83g:60053)
  • [11] T. Hill and V. Pestien, The advantage of using non-measurable stop rules, Ann. Probab. (to appear). MR 690141 (84f:60065)
  • [12] U. Krengel and L. Sucheston, Semiamarts and finite values, Bull. Amer. Math. Soc. 83 (1977), 745-747. MR 0436314 (55:9261)
  • [13] -, On semiamarts, amarts, and processes with finite value, Adv. in Prob. Related Topics 4 (1978), 197-266. MR 515432 (80g:60053)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60G40, 60G42, 62L15

Retrieve articles in all journals with MSC: 60G40, 60G42, 62L15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0697070-7
Keywords: Optimal stopping, extremal distributions, inequalities for stochastic processes, prophet inequalities, martingales, Markov processes
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society