Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Bi-interpretable groups and lattices


Author: M. Jambu-Giraudet
Journal: Trans. Amer. Math. Soc. 278 (1983), 253-269
MSC: Primary 06F15; Secondary 03C52
DOI: https://doi.org/10.1090/S0002-9947-1983-0697073-2
MathSciNet review: 697073
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A large class of 0-$ 2$ transitive lattice-ordered groups is finitely axiomatizable as a class of groups and as a class of lattices. In each model, the group structure and the lattice structure plus one parameter are bi-interpretable, sometimes up to duality only. A characterization of lattice-automorphisms of the structures is also given.


References [Enhancements On Off] (What's this?)

  • [1] A. M. W. Glass, Ordered permutation groups, London Math. Soc. Lecture Notes Series, Cambridge Univ. Press, Cambridge, 1981. MR 645351 (83j:06004)
  • [2] A. M. W. Glass, Y. Gurevich, W. C. Holland and S. Shelah, Rigid homogeneous chains, Math. Proc. Cambridge Philos. Soc. 89 (1981), 7-17. MR 591966 (82c:06001)
  • [3] Y. Gurevich and W. C. Holland, Recognizing the real line, Trans. Amer. Math. Soc. 265 (1981), 527-534. MR 610963 (82g:03060)
  • [4] W. C. Holland, Outer automorphisms of 0-permutation groups, Edinburgh Math. Soc. 19 (1976), 331-334. MR 0387150 (52:7995)
  • [5] M. Jambu-Giraudet, Théorie des modèles de groupes d'automorphismes d'ensembles totalement ordonnés, Thèse de troisième cycle, Univ. Paris VII, 1979.
  • [6] -, Théorie des modèles de groupes d'automorphismes d'ensembles totalement ordonnés $ 2$-homogènes, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), 1037-1039. MR 582491 (81f:03046)
  • [7] -, Lattice theory of some lattice-ordered groups, Abstracts Amer. Math. Soc. 1 (1980), 477. Abstract 80T-A154.
  • [8] S. H. McCleary, Groups of homeomorphisms with manageable automorphism group, Comm. Algebra 6 (1978), 497-528. MR 484757 (81e:20045)
  • [9] B. Rabinovich, On linearly ordered sets with $ 2$-transitive groups of automorphisms, Vescī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk 6 (1975), 10-17. (Russian)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 06F15, 03C52

Retrieve articles in all journals with MSC: 06F15, 03C52


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0697073-2
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society