Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Sign changes in harmonic analysis on reductive groups


Author: Robert E. Kottwitz
Journal: Trans. Amer. Math. Soc. 278 (1983), 289-297
MSC: Primary 22E35; Secondary 22E30
DOI: https://doi.org/10.1090/S0002-9947-1983-0697075-6
MathSciNet review: 697075
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a connected reductive group over a field $ F$. In this note the author constructs an element $ e(G)$ of the Brauer group of $ F$. The square of this element is trivial. For a local field, $ e(G)$ may be regarded as an element of $ \{ \pm 1\} $ and is needed for harmonic analysis on reductive groups over that field. For a global field there is a product formula.


References [Enhancements On Off] (What's this?)

  • [1] D. Flath, A comparison of the automorphic representations of $ GL(3)$ and its twisted forms, Thesis, Harvard University, 1977; Pacific J. Math. (to appear). MR 641166 (83d:22013)
  • [2] S. Gelbart and H. Jacquet, Forms of $ GL(2)$ from the analytic point of view, Proc. Sympos. Pure Math., vol. 33, part 1, Amer. Math. Soc., Providence, R.I., 1979, pp. 213-251. MR 546600 (81e:10024)
  • [3] J. Giraud, Cohomologie non abélienne, Springer-Verlag, Berlin, Heidelberg and New York, 1971. MR 0344253 (49:8992)
  • [4] H. Jacquet and R. P. Langlands, Automorphic forms on $ GL(2)$, Lecture Notes in Math., vol. 114, Springer-Verlag, Berlin, Heidelberg and New York, 1970. MR 0401654 (53:5481)
  • [5] R. Kottwitz, Orbital integrals and base change, Proc. Sympos. Pure Math., vol. 33, part 2, Amer. Math. Soc., Providence, R.I., 1979, pp. 111-113. MR 546612 (81f:22030)
  • [6] R. P. Langlands, Stable conjugacy: definitions and lemmas, Canad. J. Math. 31 (1979), 700-725. MR 540901 (82j:10054)
  • [7] S. Shatz, Profinite groups, arithmetic, and geometry, Ann. of Math. Studies, no. 67, Princeton Univ. Press and Univ. of Tokyo Press, 1972. MR 0347778 (50:279)
  • [8] D. Shelstad, Characters and inner forms of a quasi-split group over $ {\mathbf{R}}$, Comp. Math. 39 (1979), 11-45. MR 539000 (80m:22023)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E35, 22E30

Retrieve articles in all journals with MSC: 22E35, 22E30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0697075-6
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society