Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Convergence of linear and nonlinear Padé approximants from series of orthogonal polynomials


Authors: D. S. Lubinsky and A. Sidi
Journal: Trans. Amer. Math. Soc. 278 (1983), 333-345
MSC: Primary 41A21; Secondary 30E10
DOI: https://doi.org/10.1090/S0002-9947-1983-0697078-1
MathSciNet review: 697078
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Analogues of the Nuttall-Pommerenke theorem and Wallin-type theorems for classical Padé approximants, are proved for linear and nonlinear Padé approximants formed from series of orthogonal polynomials, corresponding to a distribution $ d\alpha (x)$ with at most finitely many sign changes.


References [Enhancements On Off] (What's this?)

  • [1] G. A. Baker, Jr., Essential of Padé approximants, Academic Press, New York, 1975.
  • [2] E. W. Cheney, Introduction to approximation theory, McGraw-Hill, New York, 1966. MR 0222517 (36:5568)
  • [3] J. S. R. Chisholm and A. K. Common, Padé-Chebyshev approximants, Padé Approximation and its Applications (L. Wuytack, ed.), Lecture Notes in Math., vol. 765, Springer-Verlag, Berlin, 1979, pp. 1-19. MR 561442 (81m:41012)
  • [4] C. W. Clenshaw and K. Lord, Rational approximations from Chebyshev series, Studies in Numerical Analysis (B. K. P. Scaife, ed.), Academic Press, New York, 1974, pp. 95-113. MR 0356444 (50:8914)
  • [5] J. Fleischer, Analytic continuation of scattering amplitudes and Padé approximants, Nuclear Phys. B 37 (1972), 59-76. MR 0305747 (46:4877)
  • [6] -, Nonlinear Padé approximants for Legendre series, J. Math. Phys. 14 (1973), 246-248. MR 0322230 (48:592)
  • [7] G. Freud, Orthogonal polynomials, Pergamon Press, Budapest, 1971.
  • [8] A. A. Gončar, On the convergence of generalized Padé approximants of meromorphic functions, Math. USSR-Sb. 27 (1975), 503-514.
  • [9] W. B. Gragg, Laurent, Fourier and Chebyshev Padé tables, Padé and Rational Approximation (E. B. Saff, R. S. Varga, eds.), Academic Press, New York, 1977, pp. 61-72. MR 0477569 (57:17088)
  • [10] E. Hille, Analytic function theory, vol. 2, Ginn, Boston, Mass., 1962. MR 0201608 (34:1490)
  • [11] J. T. Holdeman, A method for the approximation of functions defined by formal series expansions in orthogonal polynomials, Math. Comp. 23 (1969), 275-287. MR 0251412 (40:4641)
  • [12] J. Karlsson, Rational interpolation and best rational approximation, J. Math. Anal. Appl. 53 (1976), 38-52. MR 0393955 (52:14762)
  • [13] D. S. Lubinsky, Diagonal Padé approximants and capacity, J. Math. Anal. Appl. 78 (1980), 58-67. MR 595764 (82e:30050)
  • [14] -, Exceptional sets of Padé approximants, Ph.D. Thesis, Witwatersrand University, Johannesburg, 1980.
  • [15] -, On convergence of rational and best rational approximations, J. Math. Anal. Appl. (to appear). MR 730517 (85c:30041)
  • [16] H. J. Maehly, Rational approximations for transcendental functions, Proceedings of the International Conference on Information Processing, Butterworths, 1960. MR 0148206 (26:5714)
  • [17] J. Nuttall, The convergence of Padé approximants of meromorphic functions, J. Math. Anal. Appl. 31 (1970), 147-153. MR 0288279 (44:5477)
  • [18] C. Pommerenke, Padé approximants and convergence in capacity, J. Math. Anal. Appl. 41 (1973), 775-780. MR 0328090 (48:6432)
  • [19] A. Sidi, Computation of the Chebyshev-Padé table, J. Comput. Appl. Math. 1 (1975), 69-71. MR 0383700 (52:4580)
  • [20] -, Uniqueness of Padé approximants from series of orthogonal polynomials, Math. Comp. 39 (1977), 738-739. MR 0447901 (56:6211)
  • [21] H. Stahl, Beiträge zum Problem der Konvergenz von Padéapproximierenden, Ph. D. Thesis, Technische Universität, Berlin, 1976.
  • [22] S. P. Suetin, On the convergence of rational approximations to polynomial expansions in domains of meromorphy, Math. USSR.-Sb. 34 (1978), 367-381.
  • [23] H. Wallin, The convergence of Padé approximants and the size of the power series coefficients, Appl. Anal. 4 (1974), 235-251. MR 0393445 (52:14255)
  • [24] H. Wallin, Potential theory and approximation of analytic functions by rational interpolation, Proceedings of Complex Analysis Conference at Joensuu, (I. Laine, O. Lehto, T. Sorvali, eds.), Lecture Notes in Math., vol. 747, Springer-Verlag, Berlin, 1979, pp. 434-450. MR 553073 (81i:30069)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 41A21, 30E10

Retrieve articles in all journals with MSC: 41A21, 30E10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0697078-1
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society