Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Gauss-Lucas theorem and Jensen polynomials


Authors: Thomas Craven and George Csordas
Journal: Trans. Amer. Math. Soc. 278 (1983), 415-429
MSC: Primary 30D10; Secondary 12D05, 30C15
DOI: https://doi.org/10.1090/S0002-9947-1983-0697085-9
MathSciNet review: 697085
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A characterization is given of the sequences $ \{ {\gamma_k}\}_{k = 0}^\infty $ with the property that, for any complex polynomial $ f(z) = \Sigma \,{a_k}{z^k}$ and convex region $ K$ containing the origin and the zeros of $ f$, the zeros of $ \Sigma \,{\gamma_k}{a_k}{z^k}$ again lie in $ K$. Many applications and related results are also given. This work leads to a study of the Taylor coefficients of entire functions of type I in the Laguerre-Pólya class. If the power series of such a function is given by $ \Sigma \,{\gamma_k}{z^k}/k!$ and the sequence $ \{ {\gamma_k}\} $ is positive and increasing, then the sequence satisfies an infinite collection of strong conditions on the differences, namely $ {\Delta ^n}{\gamma_k} \geqslant 0$ for all $ n$, $ k$.


References [Enhancements On Off] (What's this?)

  • [CC1] T. Craven and G. Csordas, Multiplier sequences for fields, Illinois J. Math. 21 (1977), 801-817. MR 0568321 (58:27921)
  • [CC2] -, An inequality for the distribution of zeros of polynomials and entire functions, Pacific J. Math. 95 (1981), 263-280. MR 632185 (84b:30007)
  • [CC3] -, Location of zeros. Part I: Real polynomials and entire functions, Illinois J. Math. (to appear).
  • [B] R. P. Boas, Entire functions, Academic Press, New York, 1954. MR 0068627 (16:914f)
  • [HK] S. Hellerstein and J. Korevaar, Limits of entire functions whose growth and zeros are restricted, Duke Math. J. 30 (1963), 221-227. MR 0150304 (27:305)
  • [HW] S. Hellerstein and J. Williamson, Successive derivatives of entire functions, Proc. Amer. Math. Soc. 66 (1977), 105-108. MR 0460637 (57:630)
  • [K] J. Korevaar, Limits of polynomials with restricted zeros, Studies in Mathematical Analysis and Related Topics (Essays in honor of G. Pólya), Stanford Univ. Press, Stanford, 1962. MR 0150268 (27:269)
  • [L] B. Ja. Levin, Distributiion of zeros of entire functions, Transl. Math. Mono., vol. 5, Amer. Math. Soc. Providence, R. I., 1964; rev. ed., 1980. MR 589888 (81k:30011)
  • [M1] M. Marden, Geometry of polynomials, rev. ed., Math. Surveys, no. 3, Amer. Math. Soc., Providence. R. I., 1966. MR 0225972 (37:1562)
  • [M2] -, On the zeros of the derivative of an entire function, Amer. Math. Monthly 75 (1968), 829-839. MR 0235124 (38:3436)
  • [O] N. Obreschkoff, Verteilung und Berechnung der Nullstellen Reeller Polynome, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963. MR 0164003 (29:1302)
  • [P1] M. B. Porter, On a theorem of Lucas, Proc. Nat. Acad. Sci. U.S.A. 2 (1916), 247-248.
  • [P2] -, Note on Lucas' theorem, Proc. Nat. Acad. Sci. U.S.A. 2 (1916), 335-336.
  • [PS] G. Pólya and J. Schur, Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen, J. Reine Angew. Math. 144 (1914), 89-113.
  • [R] I. Raitchinov, Sur un théorème de G. Pólya, Publ. Inst. Math. (Beograd) (N.S.) 16 (1963), 141-144. MR 0172979 (30:3194)
  • [Ri] J. Riordan, Combinatorial identities, Wiley, New York, 1968. MR 0231725 (38:53)
  • [S] J. Schur, Zwei Sätze über algebraische Gleichungen mit lauter reellen Wurzeln, J. Reine Angew. Math. 144 (1914), 75-88.
  • [Sz] G. Szegö, Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen, Math. Z. 13 (1922), 28-55. MR 1544526

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30D10, 12D05, 30C15

Retrieve articles in all journals with MSC: 30D10, 12D05, 30C15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0697085-9
Keywords: Multiplier sequences, Jensen polynomials, entire functions, composite polynomials, roots of polynomials, differential operators
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society