Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Equivariant vector fields on spheres


Author: Unni Namboodiri
Journal: Trans. Amer. Math. Soc. 278 (1983), 431-460
MSC: Primary 57S99
DOI: https://doi.org/10.1090/S0002-9947-1983-0701504-9
MathSciNet review: 701504
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We address the following question: If $ G$ is a compact Lie group and $ S(M)$ is the unit sphere of an $ R[G]$-module $ M$, then how many orthonormal $ G$-invariant vector fields can be found on $ S(M)$? We call this number the $ G$-field number of $ M$.

Under reasonable hypotheses on $ M$, we reduce this question to determining when the difference of two $ G$-vector bundles vanishes in a certain subquotient of the $ K{O_G}$-theory of a real projective space. In this general setting, we solve the problem for $ 2$-groups, for odd-order groups, and for abelian groups. If $ M$ also has "enough" orbit types (for example, all of them), then we solve the problem for arbitrary finite groups. We also show that under mild hypotheses on $ M$, the $ G$-field number depends only on the dimensions of the fixed point sets of $ M$.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603-632. MR 0139178 (25:2614)
  • [2] -, On the groups J(X). II, Topology 3 (1965), 137-171. MR 0198468 (33:6626)
  • [3] M. F. Atiyah, Thom complexes, Proc. London. Math. Soc. (3) 11 (1961), 291-310. MR 0131880 (24:A1727)
  • [4] M. F. Atiyah, R. Bott and A. Shapiro, Clifford modules, Topology 3 (supplement 1) (1964), 3-38. MR 0167985 (29:5250)
  • [5] M. F. Atiyah and I. G. MacDonald, Introduction to commutative algebra, Addison-Wesley, Reading, Mass., 1969. MR 0242802 (39:4129)
  • [6] J. C. Becker, The span of spherical space forms, Amer. J. Math. 94 (1972), 991-1026. MR 0312516 (47:1073)
  • [7] T. tom Dieck, Transformation groups and representation theory, Lecture Notes in Math., vol. 766, Springer-Verlag, Berlin and New York, 1979. MR 551743 (82c:57025)
  • [8] A. Dress, A characterization of solvable groups, Math. Z. 110 (1969), 213-217. MR 0248239 (40:1491)
  • [9] B. Eckmann, Beweis des Satzes von Hurwitz-Radon, Comment. Math. Helv. 15 (1942), 358-366.
  • [10] D. Gorenstein, Finite groups, Harper & Row, New York, 1968. MR 0231903 (38:229)
  • [11] A. Haefliger and M. W. Hirsch, Immersions in the stable range, Ann. of Math. (2) 78 (1963), 223-255. MR 0143224 (26:784)
  • [12] H. Hauschild, Aquivariante Homotopie. I, Arch. Math. 29 (1977), 158-165. MR 0467774 (57:7626)
  • [13] H. Hauschild and S. Waner, Equivariant Dold theorem $ \bmod\, k$ and the Adams conjecture, Illinois J. Math, (to appear). MR 684540 (85b:55021)
  • [14] H. Hopf, Ein topologischer Beitrang zur rellen Algebra, Comment. Math. Helv. 13 (1940), 219-230. MR 0004785 (3:61c)
  • [15] D. Husemoller, Fibre bundles, Springer-Verlag, Berlin and New York, 1966.
  • [16] I. M. James, Cross sections of Stiefel manifolds, Proc. London Math. Soc. (3) 8 (1958), 536-47. MR 0100840 (20:7268)
  • [17] C. Kosniowski, Equivariant cohomology and stable cohomotopy, Math. Ann. 210 (1974), 83-104. MR 0413081 (54:1202)
  • [18] L. G. Lewis, J. P. May, J. E. McClure and M. Steinberger, Equivariant stable homotopy theory, Lecture Notes in Math., Springer-Verlag, Berlin and New York (to appear). MR 866482 (88e:55002)
  • [19] L. G. Lewis, J. P. May, J. E. McClure and S. Waner, Equivariant cohomology theory (to appear).
  • [20] T. Matumoto, On $ G$-$ CW$ complexes and a theorem of J. H. C. Whitehead, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971/72), 363-374. MR 0345103 (49:9842)
  • [21] J. E. McClure, On the groups $ J{O_G}(X)$. I, Math. Z. (to appear). MR 704106 (85g:55021)
  • [22] D. Quillen, The Adams conjecture, Topology 10 (1971), 67-80. MR 0279804 (43:5525)
  • [23] G. B. Segal, Equivariant $ K$-theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129-151. MR 0234452 (38:2769)
  • [24] J.-P. Serre, Linear representations of finite groups, Springer-Verlag, Berlin and New York, 1977. MR 0450380 (56:8675)
  • [25] D. Sjerve, Vector bundles over orbit manifolds, Trans. Amer. Math. Soc. 138 (1969), 97-106. MR 0238345 (38:6621)
  • [26] S. Waner, $ G$-$ CW(V)$ complexes (preprint; to appear as part of [19]).
  • [27] -, Equivariant homotopy theory and Milnor's theorem, Trans. Amer. Math. Soc. 258 (1980), 351-368. MR 558178 (82m:55016a)
  • [28] -, Equivariant fibrations and transfer, Trans. Amer. Math. Soc. 258 (1980), 369-384. MR 558179 (82m:55016b)
  • [29] L. M. Woodward, Vector fields on spheres and a generalization, Quart. J. Math. Oxford Ser. (2) 24 (1973), 357-366. MR 0326750 (48:5093)
  • [30] M. F. Atiyah and D. O. Tall, Group representations, $ \lambda $-rings and the $ J$-homomorphism, Topology 8 (1969), 253-297. MR 0244387 (39:5702)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57S99

Retrieve articles in all journals with MSC: 57S99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0701504-9
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society