Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The coordinatization of Arguesian lattices


Authors: Alan Day and Douglas Pickering
Journal: Trans. Amer. Math. Soc. 278 (1983), 507-522
MSC: Primary 06C05; Secondary 51A30
DOI: https://doi.org/10.1090/S0002-9947-1983-0701508-6
MathSciNet review: 701508
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the auxiliary planar ternary ring of an $ n$-frame in an Arguesian lattice, $ n \geqslant 3$, is indeed an associative ring with unit. The addition of two weak necessary conditions allows us to coordinatize a hyperplane of this $ n$-frame. This generalizes the classical work of von Neumann, Baer-Inaba, Jónsson and Jónsson-Monk.


References [Enhancements On Off] (What's this?)

  • [1] B. Artmann, On coordinates in modular lattice, Illinois J. Math. 12 (1968), 626-648. MR 0236075 (38:4373)
  • [2] R. Baer, A unified theory of projective spaces and finite Abelian groups, Trans. Amer. Math. Soc. 52 (1942), 283-343. MR 0007252 (4:109f)
  • [3] P. Crawley and R. Dilworth, Algebraic theory of lattices, Prentice-Hall, Englewood Cliffs, N. J., 1973.
  • [4] O. Frink, Complemented modular lattices and projective spaces of infinite dimension, Trans. Amer. Math. Soc. 60 (1946), 452-467. MR 0018635 (8:309c)
  • [5] G. Gratzer, H. Lakser and B. Jónsson, The amalgamation property in equational classes of modular lattices, Pacific J. Math. 45 (1973), 507-524. MR 0366768 (51:3014)
  • [6] C. Herrmann and A. Huhn, Lattices of normal subgroups generated by frames, Colloq. Math. Soc. János Bolyai 14 (1975), 97-136. MR 0447064 (56:5379)
  • [7] A. Huhn, Weakly distributive lattices, Ph.D. Thesis, 1972.
  • [8] E. Inaba, On primary lattices, J. Fac. Sci. Hokkaido Univ. 11 (1948), 39-107. MR 0027740 (10:348e)
  • [9] -, Some remarks on primary lattices, Nat. Sci. Rep. Ochanomizu Univ. 2 (1951), 1-5. MR 0053071 (14:717d)
  • [10] B. Jónsson, Modular lattices and Desargues theorem, Math. Scand. 2 (1954), 295-314. MR 0067859 (16:787f)
  • [11] -, Extensions of von Neumann's coordinatization theorem, Proc. Sympos. Pure Math., vol. 2, Amer. Math. Soc., Providence, R. I., 1959, pp. 65-70.
  • [12] -, Arguesian lattices of dimension $ n \leqslant 4$, Math. Scand. 7 (1959), 133-145. MR 0109800 (22:685)
  • [13] -, Lattice theoretic approach to projective and affine geometry, Studies in Logic, North-Holland, Amsterdam, 1959. MR 0121318 (22:12057)
  • [14] -, The class of Arguesian lattices is selfdual, Algebra Universalis 2 (1972), 396. MR 0316325 (47:4873)
  • [15] B. Jónsson and G. Monk, Representation of primary Arguesian lattices, Pacific J. Math. 30 (1969), 95-139. MR 0258685 (41:3331)
  • [16] G. Monk, Desargues' law and the representation of primary lattices, Pacific J. Math. 30 (1969), 175-186. MR 0258686 (41:3332)
  • [17] J. von Neumann, Algebraic theory of continuous geometries, Proc. Nat. Acad. Sci. U.S.A. 23 (1937), 16-22.
  • [18] H. Weller, Zusammenhang zwischen verbandstheoretischen Eigenschaften des Verbandes $ \mathcal{L}({R^3})$ und arithmetischen Eigenschaften des zugehörigen Rings, Mitt. Math. Sem. Giessen 118 (1975), 1-58. MR 0384869 (52:5739)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 06C05, 51A30

Retrieve articles in all journals with MSC: 06C05, 51A30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0701508-6
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society