Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Diophantine approximation properties of certain infinite sets

Author: Wolfgang M. Schmidt
Journal: Trans. Amer. Math. Soc. 278 (1983), 635-645
MSC: Primary 10F10; Secondary 10K15
MathSciNet review: 701515
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We exhibit various infinite sets of reals whose finite subsets do not have good simultaneous rational approximations. In particular there is an infinite set such that each finite subset is "badly approximable" in the sense that Dirichlet's theorem is best possible up to a multiplicative constant.

References [Enhancements On Off] (What's this?)

  • [1] J. W. S. Cassels, On a result of Marshall Hall, Mathematika 3 (1956), 109-110. MR 0084526 (18:875d)
  • [2] -, An introduction to diophantine approximation, Cambridge Tracts 45, Cambridge Univ. Press, 1957. MR 0087708 (19:396h)
  • [3] H. Davenport, A note on diophantine approximation, Studies in Math. Analysis and Related Topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 77-81. MR 0146145 (26:3671)
  • [4] A. Khintchine, Über eine Klasse linearer Diophantischer Approximationen, Rend. Circ. Mat. Palermo 50 (1926), 170-195.
  • [5] -, Zur metrischen Theorie der diophantischen Approximationen, Math. Z. 24 (1926), 706-714. MR 1544787
  • [6] J. Mycielski, Algebraic independence and measure, Fund. Math. 61 (1967), 165-169. MR 0224762 (37:361)
  • [7] W. M. Schmidt, On badly approximable numbers and certain games, Trans. Amer. Math. Soc. 123 (1966), 178-199. MR 0195595 (33:3793)
  • [8] -, Diophantine approximation, Lecture Notes in Math., vol. 785, Springer-Verlag, Berlin and New York, 1980. MR 568710 (81j:10038)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 10F10, 10K15

Retrieve articles in all journals with MSC: 10F10, 10K15

Additional Information

Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society