The sufficiency of the Matkowsky condition in the problem of resonance

Author:
Ching Her Lin

Journal:
Trans. Amer. Math. Soc. **278** (1983), 647-670

MSC:
Primary 34E15

DOI:
https://doi.org/10.1090/S0002-9947-1983-0701516-5

MathSciNet review:
701516

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the sufficiency of the Matkowsky condition concerning the differential equation under the assumption that identically in with for and for . Y. Sibuya proved that the Matkowsky condition implies resonance in the sense of N. Kopell if and are convergent power series for and the interval is contained in a disc with center at 0. The main problem in this work is to remove from Sibuya's result the assumption that is a disc.

**[1]**M. Abramowitz and I. A. Stegun, Eds.,*Handbook of mathematical functions*, Nat. Bur. Standards Appl. Math. Ser. 55, U. S. Government Printing Office, Washington, D.C., 1964. MR**0167642 (29:4914)****[2]**R. C. Ackerberg and R. E. O'Malley,*Boundary layer problems exhibiting resonance*, Stud. Appl. Math.**49**(1970), 61-73. MR**0269940 (42:4833)****[3]**L. P. Cook and W. Eckhaus,*Resonance in a boundary value problem of singular perturbation type*, Stud. Appl. Math.**52**(1973), 129-139. MR**0342799 (49:7543)****[4]**P. F. Hsieh and Y. Sibuya,*On the asymptotic integration of second order linear ordinary differential equations with polynomial coefficients*, J. Math. Anal. Appl.**16**(1966), 84-103. MR**0200512 (34:403)****[5]**N. Kopell,*A geometric approach to boundary layer problems exhibiting resonance*, SIAM J. Appl. Math.**37**(1979), 436-458. MR**543963 (82d:34079)****[6]**H. O. Kreiss and S. V. Parter,*Remarks on singular perturbations with turning points*, SIAM J. Math. Anal.**5**(1974), 230-251. MR**0348212 (50:710)****[7]**C-H. Lin,*Phragmen-Lindelof theorem in a cohomological form*, Univ. of Minnesota Math. Report 81-151.**[8]**-,*The sufficiency of Matkowsky-condition in the problem of resonance*, Ph.D. Thesis, Univ. of Minnesota, June 1982.**[9]**B. J. Matkowsky,*On boundary layer problems exhibiting resonance*, SIAM Rev.**17**(1975), 82-100. MR**0358004 (50:10469)****[10]**F. W. Olver,*Sufficient conditions for Ackerber-O'Malley resonance*, SIAM J. Math. Anal.**9**(1978), 328-355. MR**0470383 (57:10137)****[11]**R. E. O'Malley,*Introduction to singular perturbation*, Academic Press, New York, 1974.**[12]**Y. Sibuya,*Uniform simplification in a full neighborhood of a turning point*, Mem. Amer. Math. Soc. No. 149 (1974). MR**0440140 (55:13020)****[13]**-,*Global theory of a second order linear ordinary differential equation with a polynomial coefficient*, North-Holland, Amsterdam, 1975.**[14]**-,*A theorem concerning uniform simplification at a transition point and the problem of resonance*, SIAM J. Math. Anal.**12**(1981), 653-668. MR**625824 (82m:34060)****[15]**W. Wasow,*Asymptotic expansions for ordinary differential equations*, Interscience, New York, 1965. MR**0203188 (34:3041)****[16]**A. M. Watts,*A singular perturbation problem with a turning point*, Bull. Austral. Math. Soc.**5**(1971), 61-73. MR**0296444 (45:5504)****[17]**E. T. Whittaker and G. H. Watson,*A course of modern analysis*, 4th ed., Cambridge Univ. Press, Cambridge, 1952.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
34E15

Retrieve articles in all journals with MSC: 34E15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1983-0701516-5

Article copyright:
© Copyright 1983
American Mathematical Society