EMBEDDING L^1 IN L^1/H^1

BY

J. BOURGAIN

ABSTRACT. It is proved that L^1 is isomorphic to a subspace of L^1/H^1. More precisely, there exists a diffuse σ-algebra \mathcal{G} on the circle such that the corresponding expectation $E: H^\infty \to L^\infty(\mathbb{C})$ is onto. The method consists in studying certain martingales on the product $\mathbb{N}^\mathbb{N}$.

1. Introduction. Let us start by fixing some terminology. As usual, \mathbb{I} will denote the circle equipped with its Haar measure m, H^1_0 is the subspace of those $f \in L^1(\mathbb{I})$ for which $\hat{f}(n) = 0$ for $n \leq 0$ and $q: L^1 \to L^1/H^1_0$ is the quotient map.

We are interested in the question whether or not there exists a linear embedding of the Banach space L^1 in the space L^1/H^1_0. We briefly indicate some motivation for this problem. First, it was (and still remains) an open question if the three-space-property holds for L^1-embedding, i.e. suppose X a Banach space, Y a subspace of X. Is it true that whenever L^1 embeds in X, it also has to embed in either Y or X/Y?

The problem is also unsolved in the particular case $X = L^1$ and Y isomorphic to a dual space. It is not hard to show that an embedding of L^1 in X/Y is then equivalent to the existence of a subspace S of X, S isomorphic to L^1 so that the quotient map $X \to X/Y$ is an isomorphism when restricted to S.

In the special situation $X = L^1(\mathbb{I})$ and $Y = H^1_0$, the answer was unknown for some time. There was hope that this may provide a counterexample in view of the following result, due to W. B. Johnson (see [9]).

PROPOSITION 1. No complemented subspace of L^1/H^1_0 is isomorphic to L^1.

This is a consequence of the fact that any operator $T: L^1/H^1 \to L^1$ maps weakly compact sets onto norm compact sets. Let us sketch the argument.

Consider the identity map $I: L^\infty/H^\infty \to L^1/H^1$. Then $(TI)^*: L^\infty \to H^\infty \to H^1$ is integral and therefore nuclear (since H^1 satisfies the Radon-Nikodym property). Consequently, also TI is nuclear. Given now a weakly null sequence $(x_n)_{n=1,2,...}$ in L^1/H^1, it follows from the lifting property (see [9] for instance) that $x_n = q(f_n)$ where $(f_n; n = 1,2,...)$ is a relatively weakly compact set in $L^1(\mathbb{I})$. Therefore, for each $\epsilon > 0$, a truncation argument provides a bounded sequence (g_n) in L^∞ such that $\|f_n - g_n\|_1 < \epsilon$ for each n. Thus

$$\|Tx_n - TI\tilde{g}_n\| < \|T\| \|x_n - I\tilde{g}_n\| < \epsilon \|T\|.$$
Because TI is nuclear, the set $\{TI(\tilde{g}_n); n = 1, 2, \ldots\}$ is compact for each $\varepsilon > 0$. So we conclude that $\{T_x_n\}$ is compact, as announced.

Using Proposition 1, the following is proved in [2].

Proposition 2. There is no almost isometric embedding of the complex L^1 space in L^1/H^1.

Thus $d(S, L^1) > \gamma > 1$ for each subspace S of L^1/H_0^1, where d is the Banach-Mazur distance (see [8, 9] for definitions). This observation allows us to define a natural distortion of L^1, by taking

$$||f|| = ||f||_1 + ||q(f)||_1, \quad f \in L^1(\Pi).$$

Say that an operator $T: X \to Y$ is a semiembedding provided T is one-one and maps the closed unit ball of X on a norm-closed subset of Y. It can be shown that a semiembedding $T: L^1 \to L^1$ has to fix an L^1-copy (i.e. is an isomorphism when restricted to a subspace S of L^1, S isomorphic to L^1). On the other hand, (see [3]):

Proposition 3. The restriction of the quotient map $q: L^1 \to L^1/H_0^1$ to the subspace L^1_R of real functions in $L^1(\Pi)$ is a semiembedding.

No example is known of a semiembedding of L^1 in a Banach space X not containing L^1.

Our purpose is to prove the existence of a natural embedding of L^1 in L^1/H_0^1. There exists a diffuse σ-algebra \mathcal{E} on Π so that the restriction of q to the complex $L^1(\mathcal{E})$-space is an isomorphism. More precisely:

Theorem. There exists an increasing sequence (n_k) of positive integers, such that if \mathcal{E} is the σ-algebra on Π generated by the functions $\sigma_k(\theta) = \text{sign} \cos n_k \theta$, then the restriction of q to $L^1(\mathcal{E})$ is an isomorphism. Consequently, for this σ-algebra \mathcal{E}, the expectation operator $E: H^\infty \to L^\infty(\mathcal{E})$ is onto.

The argument presented here is rather delicate. In order to give the reader an idea how it is organised, we briefly outline the proof. We have to introduce the σ-algebra \mathcal{E} such that the inequality

\[(*) \quad ||h - E_{\mathcal{E}}[h]||_1 \geq \delta ||h||_1 \]

holds for each $h \in H_0^1$. But choosing the sequence (n_k) sufficiently lacunary, it is enough to verify $(*)$ for functions h with spectrum contained in a set of the form

$$E = \{\sum v_k n_k; |v_k| \leq a_k \text{ for each } k\}$$

where (a_k) is a sequence of positive integers and $(n_k), (a_k)$ satisfy the transference property. Thus the n_k-frequencies can be replaced by independent variables. The space $H_0^1 \cap L^1_E$ identifies with a subspace of the space $\mathcal{H} \subset L^1(\Pi^N)$ of those functions $h = \Sigma h_k$ on Π^N such that each increment $h_k = h_k(x_1, \ldots, x_k)$ is an H_0^1-function in x_k. The required inequality now becomes

\[(**) \quad ||h - E_{\mathcal{E}}[h]||_1 \geq ||h||_1 \]

for $h \in \mathcal{H}$, where \mathcal{E} is a natural diadic product σ-algebra on Π^N (generated by the functions $\sigma_k(x) = \text{sign} \cos x_k$).
This reduction of the problem is worked out in §4. Its purpose is to approach the problem with martingale techniques. The martingale prerequisites are given in §2. To obtain (**) we first prove \(L^1 \)-estimations for certain square functions related to \(h \) (see Lemma 4). These are derived using a “step-by-step” method (explained at the beginning of §5) and an examination of what happens at each increment. More precisely, we have to consider at this point functions of the form \(a + h - b \sigma \), where \(a, b \) are scalars, \(h \in H^1_0 \) and \(\sigma = \text{sign cos} \).

Minorations of the \(L^1 \)-norm of such expressions are given in Propositions 8 and 9 below. It is only at this place that some complex function theory will be involved.

2. Martingale preliminaries. Let \((\mathcal{F}_k)_{k=0,1,2,...}\) be an increasing sequence of \(\sigma \)-algebras on a probability space \((\Omega, \mathcal{F}, P)\) assuming \(\mathcal{F} = \bigvee_{k=1}^{\infty} \mathcal{F}_k \). Denote by \(E_k \) the expectation with respect to \(\mathcal{F}_k \). For \(f \in L^1(\mathcal{F}) \) let

\[
\|E[f]\| = \sup_k |E_k[f]| \quad \text{and} \quad S(f) = \left[|E_0[f]|^2 + \sum_{k=1}^{\infty} |E_k[f] - E_{k-1}[f]|^2 \right]^{1/2}.
\]

We will use the notation \(C \) to indicate a numerical constant. Let us recall the following result, due to D. Davis (see [7]).

Proposition 4. \(C^{-1} \|S(f)\|_1 \leq \|f^*\|_1 \leq C \|S(f)\|_1 \).

The next inequality is probably known, but we include its proof here for the sake of completeness.

Proposition 5. Let \((v_k)\) be an adapted sequence of functions; thus \(v_k \) is \(\mathcal{F}_k \)-measurable for each \(k \). Then

\[
\left\| \sum |E_{k-1}[v_k]|^2 \right\|^{1/2} \leq C \left\| \sum |v_k|^2 \right\|^{1/2}.
\]

Proof. It is no restriction to assume the \(\mathcal{F}_k \) finite algebras. Moreover, since one may always tensor the \(v_k \) against a Rademacher sequence, we can assume \(E_{k-1}[v_k] = 0 \) and thus \((v_k)\) is an adapted martingale difference sequence. Since, then

\[
\left\| \sum |v_k|^2 \right\|^{1/2} = \|v_k\|_{H^1(\mathcal{F}_k)},
\]

it follows from the atomic decomposition property for \(H^1 \)-functions (see for instance [7, Chapter I]) and convexity, that we may take for \(\sum v_k \) a function of the form (for some positive integer \(j \))

\[
a = \frac{1}{|A|} (\varphi - E_{j-1}[\varphi])
\]

where \(A \) is an \(\mathcal{F}_j \)-atom, supp \(\varphi \subset A \) and \(\|\varphi\|_\infty \leq 1 \). In this case

\[
v_k = E_k[a] - E_{k-1}[a] = 0 \quad \text{for} \ k < j,
\]

\[
= \frac{1}{|A|} \left(E_k[\varphi] - E_{k-1}[\varphi] \right) \quad \text{for} \ k \geq j.
\]
Also, $E_k[\varphi]$ is supported by A for $k \geq j$ and hence v_k for $k > j$. Thus the left side in Proposition 5 is dominated by
\[
\|v_j\|_1 + \left\| \left(\sum_{k > j} E_{k-1}[|v_k|^2] \right)^{1/2} \right\|_1
\]
\[
\leq 2 + \int_A \left(\sum_{k > j} E_{k-1}[|v_k|^2] \right)^{1/2} \text{ (by Cauchy-Schwarz)}
\]
\[
\leq 2 + |A|^{1/2} \left(\int \sum_{k > j} |v_k|^2 \right)^{1/2}
\]
\[
\leq 2 + |A|^{1/2} \|a\|_2 \leq 3,
\]
proving the result.

Proposition 6. For $f \in H^1(\mathbb{G}_k)$, one has an inequality
\[
\left(\sum \| (E_k - E_{k-1}) [f] \|_2^2 \right)^{1/2} \leq C \|f\|_1^{1/2} \|f\|_{H^1}^{1/2}.
\]

To prove this, we will first deal with the special case of the Rademacher projection on the Cantor group (in fact, only this will be used later on).

Proposition 7. If $D = \{1, -1\}^N$ is the Cantor group and $f \in H^1(D)$, then
\[
(2\|f(k)\|_2)^{1/2} \leq \|f\|_{L^1} \|
\]
where $\hat{f}(k) = \int f(e) e_k$.

Proof. We will use the theorem of [6] on the BMO-distance of a BMO-function to L^∞ (in the diadic setting). The result asserts, in particular, that for $\varphi \in \text{BMO}(D)$, $\text{dist}_{\text{BMO}}(\varphi, L^\infty) = 0$ and $\varepsilon > 0$, there exists a decomposition $\varphi = \alpha + \beta$ such that
\[
\|\alpha\|_{\text{BMO}} \leq C_1 \varepsilon \quad \text{and} \quad \|\beta\|_{\infty} \leq C_2 \max(\varepsilon, \lambda_0(\varepsilon))
\]
where $\lambda_0 = \lambda_0(\varepsilon)$ has to satisfy
\[
\sup_I \frac{1}{|I|} \left| \{ x \in I, |\varphi(x) - \varphi_I| > \lambda \} \right| \leq e^{-\lambda/\varepsilon}
\]
whenever $\lambda > \lambda_0$ ($\varphi_I = |I|^{-1} \int_I \varphi$).

Now take $\varphi = \sum a_k e_k$ with $\sum |a_k|^2 = 1$. It follows from the distribution property of Rademacher that for each diadic interval I,
\[
\left| \{ \alpha \in I; |\varphi(x) - \varphi_I| > \lambda \} \right| \leq C e^{-c\lambda^2}|I|,
\]
for numerical constants $c > 0$, $C < \infty$. Hence $\text{dist}_{\text{BMO}}(\varphi, L^\infty) = 0$ and $\lambda_0(\varepsilon) \sim 1/\varepsilon$.

Decomposing $\varphi = \alpha + \beta$ as above, we get
\[
|\langle f, \varphi \rangle| \leq |\langle f, \alpha \rangle| + |\langle f, \beta \rangle| \leq C_1 \|f\|_{H^1} + C_2 \|f\|_1.
\]
Taking supremum over φ and choosing $\varepsilon = \|f\|_1^{1/2} \|f\|_{H^1}^{1/2}$, the inequality follows.
PROOF OF PROPOSITION 6. Assume \(f \) real and estimate
\[
\left(\sum_{k=1}^{K} \| (E_k - E_{k-1})[f] \|_1^2 \right)^{1/2}.
\]

Define for each \(k \),
\[
\sigma_k = \text{sign} \Delta f_k \quad \text{and} \quad b_k = \frac{1}{2} (\sigma_k - E_{k-1}[\sigma_k]).
\]

Then
\[
\|f\|_1 \geq \int \int |f| \prod_{k=1}^{K} (1 + \epsilon_k b_k) \, d\varepsilon (d\omega) \geq \frac{1}{2} \int \sum_{k=1}^{K} \epsilon_k \Phi_k(\varepsilon) \, d\varepsilon
\]
where
\[
\Phi_k(\varepsilon) = \int \prod_{j=1}^{k-1} (1 + \epsilon_j b_j) |\Delta f_k| \, d\omega.
\]

Application of Proposition 7 to the function \(\sum \epsilon_k \Phi_k(\varepsilon) \) then gives
\[
\left(\sum_{k=1}^{K} \| \Delta f_k \|_1^2 \right)^{1/2} \leq C \|f\|_1^{-1/2} \left[\int \left(\sum |\phi_k(\varepsilon)|^2 \right)^{1/2} \, d\varepsilon \right]^{1/2}
\]
\[
\leq C \|f\|_1^{1/2} \left[\int \int S(f) \prod (1 + \epsilon_j b_j) \, d\omega \, d\varepsilon \right]^{1/2}
\]
\[
= C \|f\|_1^{1/2} \|f\|_{H^1}^{1/2}
\]
as announced.

REMARK. The author is grateful to P. W. Jones for outlining a more explicit procedure to obtain the decomposition used in the proof of Proposition 7.

3. Some inequalities involving \(H^1_0 \)-functions. The purpose of this section is to prove the following results.

PROPOSITION 8. For \(a \in C \) and \(h \in H^1_0 \), one has
\[
\|a + h\|_1 \geq \left(\|a\|^2 + \delta^2 \|h\|^2 \right)^{1/2}
\]
where \(\delta > 0 \) is a fixed constant.

PROPOSITION 9. There exists \(\delta > 0 \) such that for \(a \in C, b \in C \) and \(h \in H^1_0 \),
\[
(i) \quad \|a + h - b\sigma\|_1 \geq \left\{ \|a\|^2 + \delta^2 \left[\frac{\text{Re}(\langle h, \sigma \rangle (\langle h, \sigma \rangle - b))}{|\langle h, \sigma \rangle| + |b|} \right] \right\}^{1/2},
\]
\[
(ii) \quad \|a + h - \langle h, \sigma \rangle \sigma\|_1 \geq \left\{ \|a\|^2 + \delta^2 \|h\|_1 - \langle h, \sigma \rangle \sigma^2 \right\}^{1/2}
\]
where \(\sigma = \text{sign} \cos \theta \) and \(h_\varepsilon(\theta) = \sum_{n=1}^{\infty} \varepsilon(n) \cos n\theta \).
It is clear that it suffices to prove Propositions 8 and 9, with $a = 1$.

Proof of Proposition 8. Factoring $1 + h$ gives $1 + h = (1 + g_1)(1 + g_2)$ where $g_1, g_2 \in H_0^2$ and

$$
\| 1 + h \|_1 = \left(1 + \| g_1 \|_2^2 \right)^{1/2} \left(1 + \| g_2 \|_2^2 \right)^{1/2}.
$$

Since $| h | \leq | g_1 | + | g_2 | + | g_1 || g_2 |$ the result follows from the majorations

$$
\left\| \left(1 + | g_i |^2 \right)^{1/2} \right\|_1 \leq \left\| \left(1 + | g_i |^2 \right)^{1/2} \right\|_2 = \left(1 + \| g_i \|_2^2 \right)^{1/2} \leq \| 1 + h \|_1 \quad (i = 1, 2)
$$

and

$$
\left\| \left(1 + | g_1 |^2 | g_2 |^2 \right)^{1/2} \right\|_1 \leq 1 + \| g_1 g_2 \|_1 \leq 1 + \| g_1 \|_2 \| g_2 \|_2 \leq \| 1 + h \|_1.
$$

Also to obtain Proposition 9, we will use the L^2-theory. Our argument here is, however, more complicated. This is the only point where explicit constructions of H^∞-functions appear.

Lemma 1. Given a measurable subset A of Π, there exist H^∞-functions φ and ψ satisfying the following conditions:

(i) $| \varphi | + | \psi | \leq 1$,
(ii) $\Re \psi$ is an even function on Π,
(iii) $| \varphi - 1/8 | < 1/100$ on the set A,
(iv) $\| \varphi \|_1 \leq C | A |$,
(v) $\| \Re \psi - 1 \|_1 \leq C | A |$.

Proof. Fix some (large) $M > 0$ and define the following H^∞-functions:

$$
\tau(z) = -M \int_A \frac{e^{i\theta} + z}{e^{i\theta} - z} m(d\theta), \quad \varphi = \frac{1}{8} \left(1 - e^\tau \right)^2,
$$

$$
\psi(z) = \exp \left\{ \int \log(1 - \alpha(\theta)) \frac{e^{i\theta} + z}{e^{i\theta} - z} m(d\theta) \right\},
$$

where $\alpha(\theta) = | \varphi(e^{i\theta}) | \vee | \varphi(e^{-i\theta}) |$.

Notice that this makes sense, because e^τ has boundary value $e^{-M(\chi_A + i\mathcal{H}(\chi_A))}$ ($\mathcal{H} = \text{Hilbert-transform}$) and therefore $\| \alpha \|_\infty \leq \frac{1}{2}$.

(i) is obvious. On Π, we have $\Re \psi = (1 - \alpha) \cos \mathcal{H}(\log(1 - \alpha))$ and thus an even function. Since $| \varphi - \frac{1}{8} \alpha | \leq \frac{3}{8} | e^\tau |$ and thus $| \varphi - \frac{1}{8} | < e^{-M}$ on A (iii) holds for M large enough. Because on Π

$$
8 | \varphi | \leq \chi_A + M^2 | \mathcal{H}(\chi_A) |^2,
$$

(iv) follows. Finally,

$$
| 1 - \Re \psi | \leq | \alpha | + \frac{1}{2} | \mathcal{H}(\log(1 - \alpha)) |^2, \quad \| 1 - \Re \psi \|_1 \leq 4 \| \varphi \|_1
$$

and hence (v).

We refer the reader to [4, Proposition 1.6] for the following Marcinkiewicz type decomposition.
Lemma 2. There is a constant \(C < \infty \) such that for given \(h \in H^1_0 \) and \(\lambda > 0 \), there exists \(h_\lambda \in H_0^{2\lambda} \) satisfying:

(i) \(|h_\lambda| \leq C |h| \),

(ii) \(\|h_\lambda\|_\infty \leq C \lambda \),

(iii) \(\| h - h_\lambda \|_1 \leq C \| |h| > \lambda \| |h| \).

Let \(h \) be as in Proposition 9. For \(\lambda > 0 \), define \(A_\lambda = [|h| > \lambda] \). Application of Lemma 1 to the set \(A_\lambda \) provides \(H^\infty \)-functions \(\varphi_\lambda, \psi_\lambda \). We are now ready to prove Lemma 3.

Proof. First, since \(1 - b \sigma \) is even and \(\text{Im} \psi_\lambda \) odd, we find

\[
\| 1 + h - b \sigma \|_1 \geq \| (1 + h - b \sigma) \varphi_\lambda \|_1 + \left| \int (1 - b \sigma) \psi_\lambda \right|
\]

\[
\geq \frac{1}{9} \int_{A_\lambda} |h| - (1 + |b|) + \left| \int (1 - b \sigma) \text{Re} \psi_\lambda \right|
\]

\[
\geq \frac{1}{9} \int_{A_\lambda} |h| - \frac{1}{9} (1 + |b|)|A_\lambda| + 1 - (1 + |b|) \| 1 - \text{Re} \psi_\lambda \|_1
\]

\[
\geq \frac{1}{9} \int_{A_\lambda} |h| - C(1 + |b|)|A_\lambda| + 1
\]

for some constant \(C \). Thus, choosing \(K \) large enough, we get

\[
(\ast) \quad \| 1 + h - b \sigma \|_1 \geq 1 + \frac{1}{10} \int_{A_\lambda} |h|.
\]

Fix some small constant \(\delta > 0 \). Since we always have

\[
\| 1 + af \|_1 \leq \| 1 + f \|_1 \quad \text{for} \ 0 \leq a \leq 1 \quad \text{and} \ f \ \text{of mean} \ 0,
\]

it follows that

\[
\| 1 + h - b \sigma \|_1 \geq \| 1 + \delta \lambda^{-1}(h - b \sigma) \|_1 \geq \| 1 + \delta \lambda^{-1}(h_\lambda - b \sigma) \|_1 - \delta \lambda^{-1}\| h - h_\lambda \|_1.
\]

Because \(\delta \lambda^{-1}|h_\lambda - b \sigma| \ll 1 \) the inequality

\[
(1 + t)^{1/2} \geq 1 + t/3 \quad \text{for} \ 0 \leq t \leq 1
\]

yields

\[
|1 + \delta \lambda^{-1}(h_\lambda - b \sigma)| \geq [1 + \delta \lambda^{-1} \text{Re}(h_\lambda - b \sigma)] [1 + \frac{1}{12} \delta^2 \lambda^{-2} (\text{Im}(h_\lambda - b \sigma))^2].
\]

Therefore, also

\[
(\ast\ast) \quad \| 1 + h - b \sigma \|_1 \geq 1 + \frac{1}{20} \delta^2 \lambda^{-2} \int_{A_\lambda} \text{Im}^2(h_\lambda - b \sigma) - c \delta \lambda^{-1} \int_{A_\lambda} |h|.
\]

The required minoration clearly follows combining \((\ast) \) and \((\ast\ast) \).

Proof of Proposition 9. First

\[
\| 1 + h - b \sigma \|_1 \geq d(b \sigma, H^1) \geq \frac{|b|}{2\pi} \left| \int_{-\pi}^{\pi} \sigma(\theta) e^{i\theta} d\theta \right| = \frac{2}{\pi} |b|
\]
and hence, also,
\[\|1 + h - b\alpha\|_1 \geq \frac{1}{2}\|1 + h\|_1 \geq \frac{1}{2}\|h\|_1. \]

Notice that the right member of (i), (ii) is bounded by \(1 + 2\delta\|h\|_1\). Since now \(\|1 + h - b\alpha\|_1 \geq \frac{1}{2}\|h\|_1 + \frac{1}{2}\|b\|\), it follows that (i) (resp. (ii)) are satisfied for \(|b| \geq 6\) (resp. \(|\langle h, \sigma \rangle| \geq 6\)). Hence, we may assume \(|b| \leq M\) in (i), \(|\langle h, \sigma \rangle| \leq M\) in (ii) where \(M\) is some numerical constant.

Fix a constant \(\lambda > KM\) and put \(k = h_\lambda\) for simplicity. Using again Lemma 2(iii), the right member of (i) can be majorized by
\[
\left[1 + 2\delta^2\left(|\text{Re}\langle h, \sigma \rangle|^2 + |\text{Im}(\langle h, \sigma \rangle - b)|^2\right)\right]^{1/2}
\leq \left[1 + 2\delta^2\left(|\text{Re}\langle k, \sigma \rangle|^2 + |\text{Im}(\langle k, \sigma \rangle - b)|^2\right)\right]^{1/2} + 2\delta C \int_{A_\lambda} |h|.
\]

Taking Lemma 3 into account, we see that it suffices to check the inequality
\[
|\text{Re}\langle k, \sigma \rangle|^2 + |\text{Im}(\langle k, \sigma \rangle - b)|^2 \leq \|\text{Im}(k - b\sigma)\|_2^2
\]
which is straightforward:
\[
\|\text{Im}(k - b\sigma)\|_2^2 = \frac{1}{2} \sum_{n>0} |\text{Im}\hat{k}(n) - 2\text{Im} b\hat{\sigma}(n)|^2 + \frac{1}{2} \sum_{n>0} |\text{Re}\hat{k}(n)|^2
\]
while
\[
|\text{Re}\langle k, \sigma \rangle| \leq \sum_{n>0} |\text{Re}\hat{k}(n)||\hat{\sigma}(n)| \leq \frac{1}{\sqrt{2}} \left(\sum |\text{Re}\hat{k}(n)|^2\right)^{1/2},
\]
\[
|\text{Im}(\langle k, \sigma \rangle - b)| \leq \sum_{n>0} |\text{Im}\hat{k}(n) - 2\text{Im} b\hat{\sigma}(n)||\hat{\sigma}(n)|
\leq \frac{1}{\sqrt{2}} \left(\sum |\text{Im}\hat{k}(n) - 2\text{Im} b\hat{\sigma}(n)|^2\right)^{1/2}.
\]

For the right member of (ii), a similar reasoning reduces the question to the verification of
\[
\int |k_x - \langle k, \sigma \rangle\sigma|^2 \leq \|\text{Im}(k - b\sigma)\|_2^2,
\]
which the reader will easily do.

4. Reduction of the problem. In this section, we will reduce the problem of proving that certain elements of \(L^1(\Pi)\) normed by the quotient norm \(L^1/H^1\) to the verification of an inequality for certain functions in \(L^1(\Pi^N)\), where \(\Pi^N = \Pi \times \Pi \times \cdots\) is the product group. Denote by \(E_k (k = 1, 2, \ldots)\) the expectation with respect to the \(k\) first variables \((x_1, x_2, \ldots, x_k)\), where \(x = (x_1, x_2, \ldots)\) is the product variable.

We consider the subspace \(\mathcal{H}\) of \(L^1(\Pi^N)\) of those functions \(h\) such that for each \(k\) the difference \(E_k[h] - E_{k-1}[h]\) is an \(H^1_0\)-function with respect to \(x_k\). Thus \(h\) is of the form
\[
h = \sum h_k\quad \text{where} \quad h_k = \sum_{n>0} \hat{h}_k(n)e^{in x_k}
\]
and the \(\hat{h}_k(n)\) are functions of \(x_1, \ldots, x_{k-1}\).
Again let \(\sigma = \text{sign} \cos \) and \(\sigma_k(x) = \sigma(x_k) \) for each \(k \). Let \(\mathcal{F} \) be the \(\sigma \)-algebra on \(\Pi^N \) generated by the \(\sigma_k \). In the next section, we show the following

Proposition 10. There is a constant \(c > 0 \) s.t. \(\| h - E_{\sigma}[h] \|_1 \geq c \| h \|_1 \) for all \(h \in \mathcal{F} \).

This fact obviously implies

Corollary 11. \(\inf_{h \in \mathcal{F}} \| f - h \|_1 \geq c \| f \|_1 \) for all \(f \in L^1(\mathcal{F}) \).

For \(a, n \) positive integers, \(\mathcal{F}_a \) will be the Fejér kernel

\[
F_a(\theta) = \sum_{|j| \leq a} \frac{a + 1 - |j|}{a + 1} e^{ij\theta}
\]

and \(F_{a,n}(\theta) = F_a(n\theta) \).

We consider sequences of positive integers \((n_k) \), \((a_k) \) satisfying the following conditions: (\(\mathcal{F} \) denotes again the \(\sigma \)-algebra on \(\Pi \) generated by the functions \(\sigma(n_k\theta) \).)

(i) The transference property, i.e. let \(E = \{ \sum v_k n_k; (v_k) \in F \} \) where \(F \) is the subset \(\{(v_k), \| v_k \| \leq a_k \} \) of the dual group of \(\Pi^N \). Then the operator

\[
T: L^1_E(\Pi) \to L^1(\mathcal{F}), \quad T(f)(x) = \sum_{(v_k) \in F} f(\sum v_k n_k) e^{i(\sum v_k x_k)}
\]

satisfies

\[
\frac{1}{2} \| f \|_1 \leq \| T(f) \|_1 \leq 2 \| f \|_1.
\]

Moreover, \(T(f) \in \mathcal{F} \) for \(f \in L^1_E \cap H_0^1 \).

(ii) Defining for each \(k \),

\[
\xi_k = \sigma * F_{a_k}, \quad K = \prod_k F_{a_k,n_k},
\]

\[
R(\theta, \psi) = \prod \left[1 + \xi_k(n_k\theta) \sigma(n_k\psi) \right],
\]

one has

(a) \(\| \xi_k - \sigma \|_1 \leq \varepsilon \),

(b) \(\| K \|_1 = 1 \).

For \(f \in L^1(\mathcal{F}) \),

(\(\gamma \)) \(\| f - f * K \|_1 \leq \varepsilon \| f \|_1 \),

(\(\delta \)) \(\| f - R(f) \|_1 \leq \varepsilon \| f \|_1 \) where \(R(f)(\theta) = \int f(\psi) R(\theta, \psi) m(d\psi) \) (where \(\varepsilon > 0 \) is a small constant).

The reader will easily convince himself that the realisation of these conditions is straightforward. Details on the transference property can be found in [1].

Let us now show that the sequence \((n_k) \) satisfies the Theorem. Thus, fix \(f \in L^1(\mathcal{F}) \) and \(h \in H_0^1 \). We get, by (ii),

\[
\| f - h \|_1 \geq \| f * K - h * K \|_1 \geq \| R(f) - h * K \|_1 - 2\varepsilon \| f \|_1.
\]

Notice that \(R(f) \in L^1_E \). By (i),

\[
\| R(f) - h * K \|_1 \geq \frac{1}{2} \| T(R(f)) - h \|_1,
\]

where \(h_1 = T(h * K) \in \mathcal{F} \).
Now

\[T(R(f))(x) = \int f(\psi) \prod \left[1 + \xi_k(x_k)\sigma(n_k\psi) \right] m(d\psi). \]

By (ii)(a), we see that for any \((\pm 1)-sequence (\tau_k)\)

\[\left\| \bigotimes (1 + \tau_k \xi_k) - \prod (1 + \tau_k \sigma_k) \right\|_1 < \varepsilon \]

implying that

\[\left\| T(R(f)) - f_1 \right\| \leq 2\varepsilon\|f\| \quad \text{where } f_1 = E[T(R(f))]. \]

It follows then from Corollary 11 that

\[\left\| f - h \right\|_1 \geq \frac{1}{2}\|f_1 - h_1\|_1 - 3\varepsilon\|f\|_1 \geq \frac{c}{2}\|f_1\|_1 - 3\varepsilon\|f\|_1 \]

\[\geq \frac{c}{2}\|T(R(f))\|_1 - 4\varepsilon\|f\|_1 \geq \frac{c}{4}\|f\|_1 - 5\varepsilon\|f\|_1 \geq c\|f\|_1 \]

taking \(\varepsilon > 0\) small enough.

5. Proof of the Theorem. It remains to prove Proposition 10. So fix \(h = \Sigma h_k \in \mathcal{F}\) where

\[h_k = \sum_{n>0} \hat{h}_k(n)(x_1, \ldots, x_k) e^{inx_k}. \]

We also define

\[[h_k]_e = \sum \hat{h}_k(n) \cos nx_k, \]
\[[h_k]_o = \sum \hat{h}_k(n) \sin nx_k, \]
\[\langle h_k, \sigma_k \rangle = \sum \hat{h}_k(n) \delta(n) \]

(which is thus a function of \(x_1, \ldots, x_k\)). If \(f = E_{\varphi}[h]\), then \(f = \Sigma b_k \cdot \sigma_k\), where \(b_k = b_k(x_1, \ldots, x_k) = E_{\varphi}\langle \hat{h}_k, \sigma_k \rangle\).

Using E. Stein’s theorem on \(H^1\)-multipliers (see [11]), it is easily seen that

\[\|h\|_1 \sim \|S(h)\|_1 \quad (S = \text{square function with respect to the natural decomposition}). \]

We give a direct proof of this fact, based on Proposition 8.

Fix \(1 > \varepsilon > 0\) and a positive sequence \((s_k)_{k=1,2,\ldots} \in L^\infty(\mathbb{N})\) satisfying

\[\|\Sigma s_k^2\|^{1/2} \|_{\infty} \leq \varepsilon. \]

Fixing a positive integer \(K\), we get, using Proposition 8,

\[\left\| \Sigma_{K}[h] \right\|_1 = \left\| \Sigma_{K-1}[h] \right\|_1 + h_k \]

\[\geq \left\| \left(\left(\Sigma_{K-1}[h] \right)^2 + \delta^2 |h_k|^2 \right)^{1/2} \right\|_1 \]

\[\geq \left\| \Sigma_{K-1}[h] \right\|_1 (1 - s_K^2)^{1/2} + \delta \left\| h_k s_K \right\|_1 \]

\[\geq \left\| \Sigma_{K-1}[h] \right\|_1 + \delta \left\| h_k s_K \right\|_1 - \left\| \Sigma_{K-1}[h] s_K^2 \right\|_1. \]

Iterating,

\[\|h\|_1 \geq \delta \sum \left\| h_k s_k \right\|_1 - \sum \left\| \Sigma_{K-1}[h] s_k^2 \right\|_1 \]

\[\geq \delta \sum \left\| h_k s_k \right\|_1 - \varepsilon^2 \max_k \left\| \Sigma_{K}[h] \right\|_1. \]
Taking supremum over the sequences \((s_k)\), it follows that

\[
\|h\|_1 \Rightarrow \delta \|S(h)\|_1 - \varepsilon^2 \max_k \|E_k[h]\|_1
\]

and choosing

\[
e^2 = \frac{\|h\|_1}{\max_k \|E_k[h]\|_1},
\]

we get

\[
\|S(h)\|_1 \leq \delta^{-1} \|h\|_1^{1/2} \max_k \|E_k[h]\|_1^{1/2}.
\]

Hence, by Proposition 4, \(\|S(h)\|_1 \leq \delta^{-2} \|h\|_1\) as required.

Before continuing, notice that since \(\mathcal{F}\)-expectation is a contraction, \(\|S(f)\|_1 \leq \|S(f)\|_1\). Since for each \(k\), \(\cdots \|E_k[h_x]\|\), application of Proposition 5 yields

\[
\left\| \left(\sum \left| \langle h_k, \sigma_k \rangle \right|^2 \right)^{1/2} \right\|_1 \leq C \|h\|_1.
\]

If we now apply the previous procedure using Proposition 9, the following inequalities are derived.

Lemma 4.

\[
\begin{align*}
(1) \quad \left\| \left\{ \sum_k \left| \frac{\text{Re} \left(\langle h_k, \sigma_k \rangle (\langle h_k, \sigma_k \rangle - b_k) \right)}{\| \langle h_k, \sigma_k \rangle \| + |b_k|} \right|^2 \right\}^{1/2} \right\|_1 & \leq C \|h - f\|_1^{1/2} \|h\|_1^{1/2}, \\
(2) \quad \left\| \left\{ \sum_k \|h_k\|^2 - \langle h_k, \sigma_k \rangle \sigma_k \right\}^{1/2} \right\|_1 & \leq C \|h - \sum \langle h_k, \sigma_k \rangle \sigma_k \|_1^{1/2} \|h\|_1^{1/2}.
\end{align*}
\]

Proof. Let us show how \((1)\) follows from Proposition 9(i). The argument for \((2)\) is analogous. Fix \(0 < \varepsilon < 1\) and a sequence \((s_k)_{k=1,2,\ldots}\) of positive \(L^\infty\)-functions on \(\prod^N\) satisfying \(\|(\sum s_k^2)^{1/2}\|_\infty \leq \varepsilon\). Fix an integer \(k\) and apply Proposition 9(i) in the variable \(x_k\). We get

\[
\|E_k[h - f]\|_1 = \|E_{k-1}[h - f]\|_1 + \|h_k - b_k\|_\sigma_1
\]

\[
\geq \left\| \left\{ \text{Re} \left(\langle h_k, \sigma_k \rangle (\langle h_k, \sigma_k \rangle - b_k) \right) \right\}^{1/2} \right\|_1
\]

\[
\geq \|E_{k-1}[h - f]\|_1 + \delta \left\| \text{Re} \left(\langle h_k, \sigma_k \rangle (\langle h_k, \sigma_k \rangle - b_k) \right) \right\|_1
\]

\[
- \|E_{k-1}[h - f]\| s_k^2_1.
\]

Iterating and using the same considerations as in the beginning of this section it follows that the left member of \((1)\) is dominated by

\[
\delta^{-1} \varepsilon^{-1} \|h - f\|_1 + \text{const.} \varepsilon \|S(h - f)\|_1,
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
and hence, choosing ϵ appropriately, by the right member of (I). We first make use of (I) to show

Lemma 5. $\|\sum (\langle h_k, \sigma_k \rangle - b_k^2)^{1/2}\|_1 \leq C\|h - f\|_1^{1/4}\|h\|_1^{3/4}$.

Proof. Write

$$2 \left(\frac{\text{Re} \langle h_k, \sigma_k \rangle \langle h_k, \sigma_k \rangle - h_k}{|\langle h_k, \sigma_k \rangle| + |b_k|} \right) = \xi_k - |b_k|$$

where

$$\xi_k = \frac{|\langle h_k, \sigma_k \rangle - b_k|^2}{|\langle h_k, \sigma_k \rangle| + |b_k|} + |\langle h_k, \sigma_k \rangle|.$$

By the triangle inequality, the left side of (I) dominates

$$\left\| \left(\sum |\xi_k|^2 \right)^{1/2} \right\|_1 - \left\| \left(\sum |b_k|^2 \right)^{1/2} \right\|_1.$$

Also, since $b_k = E\langle h_k, \sigma_k \rangle$,

$$\left\| \left(\sum |b_k|^2 \right)^{1/2} \right\|_1 \leq \left\| \left(\sum |\langle h_k, \sigma_k \rangle|^2 \right)^{1/2} \right\|_1.$$

Write

$$\left[\sum (\xi_k^2 - |\langle h_k, \sigma_k \rangle|^2) \right]^{1/2}$$

$$= \left[\left(\sum \xi_k^2 \right)^{1/2} + \left(\sum |\langle h_k, \sigma_k \rangle|^2 \right)^{1/2} \right]^{1/2} \left[\left(\sum \xi_k^2 \right)^{1/2} - \left(\sum |\langle h_k, \sigma_k \rangle|^2 \right)^{1/2} \right]^{1/2}$$

and apply Cauchy-Schwarz. From (I) and previous observations

$$\left\| \left(\sum (\xi_k^2 - |\langle h_k, \sigma_k \rangle|^2) \right)^{1/2} \right\|_1 \leq C\|h\|_1^{1/2}\|h - f\|_1^{1/4}\|h\|_1^{3/4} = C\|h - f\|_1^{1/4}\|h\|_1^{3/4}.$$

Since for each k,

$$\xi_k^2 - |\langle h_k, \sigma_k \rangle|^2 = (\xi_k + |\langle h_k, \sigma_k \rangle|) \frac{|\langle h_k, \sigma_k \rangle - b_k|^2}{|\langle h_k, \sigma_k \rangle| + |b_k|} \geq C|\langle h_k, \sigma_k \rangle - b_k|^2.$$

Lemma 5 is proved.

The left side of Lemma 5 dominates $\|f - \sum \langle h_k, \sigma_k \rangle \sigma_k\|_1$.

Lemma 6. $\|\Sigma[h_k]_0\|_1$ and $\|\Sigma \left[|h_k| \right] - b_k \sigma_k^2 \right]^{1/2}\|_1 \leq C\|h - f\|_1^{1/8}\|h\|_1^{7/8}$.

Proof. Since $\Sigma[h_k]_0 = h - \Sigma[h_k]_c$, the first inequality is a consequence of the second. Write

$$\left\| \left[\sum \left[|h_k| \right] - b_k \sigma_k^2 \right]^{1/2} \right\|_1 \leq \left\| \left[\sum \left[|h_k| \right] - \langle h_k, \sigma_k \rangle \sigma_k^2 \right]^{1/2} \right\|_1 + \left\| \left[\sum \langle h_k, \sigma_k \rangle - b_k \right]^{1/2} \right\|_1,$$
which by Lemmas 4(II) and 5 is estimated by

\[C\|h - \sum \langle h_k, \sigma_k \rangle \sigma_k \|_1^{1/2} \|h\|_1^{1/2} + C\|h - f\|_1^{1/4}\|h\|_1^{3/4} \leq C\|h - f\|_1^{1/8}\|h\|_1^{7/8}. \]

Define for \(u \in L^1(\mathbb{N}) \),

\[(u)_e(x) = \int_D u(e_1x_1, e_2x_2, \ldots) \, d\varepsilon \]

(= the natural projection on the even part in \(x_1, x_2, \ldots \)).

Lemma 7. \(\|\sum_k (\hat{h}_k(n))_e(x) \sin nx_k \|_2 \leq C\|h - f\|_1^{1/16}\|h\|_1^{15/16} \).

Proof. At this point, we will make use of Proposition 7. Fix \(x \in \mathbb{N} \) and remark that the sequence of functions in \(e \in D \),

\[[h_k]_0(e_1x_1, e_2x_2, \ldots), \]

is a martingale difference sequence.

Moreover, the \(k \) th Rademacher coefficient is clearly given by

\[\sum_{n>0} (\hat{h}_k(n))_e(x) \sin nx_k \]

and Proposition 7 yields

\[\left[\sum_k \left(\sum_{n>0} (\hat{h}_k(n))_e(x) \sin nx_k \right)^2 \right]^{1/2} \leq C\left[\int \left| \sum_k [h_k]_0(e \cdot x) \right|^2 \, d\varepsilon \left[\int \left[\sum_k \left| [h_k]_0 e \cdot x \right|^2 \right]^{1/2} \, d\varepsilon \right]^{1/2}. \]

Integration in \(x \), application of Cauchy-Schwarz and Lemma 6, gives

\[(+) \left\| \sum_k \left(\sum_{n>0} (\hat{h}_k(n))_e \sin nx_k \right)^2 \right\|_2 \leq C\|h - f\|_1^{1/16}\|h\|_1^{15/16} \left[\sum_k \left| [h_k]_0 \right|^2 \right]^{1/2}. \]

Also

\[\left\| \sum_k \left([h_k]_0 \right)^2 \right\|_1 \leq C\|h\|_1. \]

On the other hand, we can multiply the \(k \) th increment in the left member of \((+)\) by \(\sin x_k \) and then take \(\mathbb{E}_{k-1} \)-expectation. Proposition 5 shows that

\[\left\| \sum_k \left(\hat{h}_k(n) \right)_e \right\|_1^{1/2} \leq C\|h - f\|_1^{1/16}\|h\|_1^{15/16}, \]

proving Lemma 7.

Now, rewriting

\[\left[\sum_k \left([h_k]_e - b_k\sigma_k \right)^2 \right]^{1/2} = \left[\sum_k \sum_{n>0} \hat{h}_k(n) \cos nx_k - b_k\sigma_k \right]^2 \]
multiplication of the kth increment by $\cos x_k$ and taking E_{k-1}-expectation yields (by Proposition 5 and Lemma 6)

$$\left\| \sum_k \left\{ \frac{1}{2} \hat{h}_k(1) - \frac{2}{\pi} b_k \right\}^{2^{1/2}} \right\|_1 \leq C \| h - f \|_1^{1/8} \| h \|^{7/8}_1.$$

Since $b_k = (b_k)_e$, a convexity argument allows us to replace, in a previous inequality, $\hat{h}_k(1)$ by $(\hat{h}_k(1))_e$. Combining with Lemma 7, we conclude

$$C^{-1} \| f \|_1 \leq \left(\sum |b_k|^2 \right)^{1/2} \leq C \| h - f \|_1^{1/16} \| h \|_1^{15/16}, \quad \| f \|_1 \leq C \| h - f \|_1,$$

and thus Proposition 10.

REFERENCES