Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Subcontinua with degenerate tranches in hereditarily decomposable continua


Authors: Lex G. Oversteegen and E. D. Tymchatyn
Journal: Trans. Amer. Math. Soc. 278 (1983), 717-724
MSC: Primary 54F20; Secondary 54F50
DOI: https://doi.org/10.1090/S0002-9947-1983-0701520-7
MathSciNet review: 701520
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A hereditarily decomposable, irreducible, metric continuum $ M$ admits a mapping $ f$ onto $ [0,1]$ such that each $ {f^{ - 1}}(t)$ is a nowhere dense subcontinuum. The sets $ {f^{ - 1}}(t)$ are the tranches of $ M$ and $ {f^{ - 1}}(t)$ is a tranche of cohesion if $ t \in \{ 0,1\} $ or $ {f^{ - 1}}(t) = {\text{C1}}({f^{ - 1}}([0,t))) \cap {\text{C1}}\,({f^{ - 1}}((t,1]))$. The following answer a question of Mahavier and of E. S. Thomas, Jr.

Theorem. Every hereditarily decomposable continuum contains a subcontinuum with a degenerate tranche.

Corollary. If in an irreducible hereditarily decomposable continuum each tranche is nondegenerate then some tranche is not a tranche of cohesion.

The theorem answers a question of Nadler concerning arcwise accessibility in hyperspaces.


References [Enhancements On Off] (What's this?)

  • [1] D. P. Bellamy, Composants of Hausdorff indecomposable continua; a mapping approach, Pacific J. Math. 47 (1973), 303-309. MR 0331345 (48:9679)
  • [2] E. Dyer, Irreducibility of the sum of the elements of a continuous collection, Duke Math. J. 20 (1953), 589-592. MR 0058198 (15:335f)
  • [3] J. Grispolakis and E. D. Tymchatyn, Irreducible continua with degenerate end-tranches and arcwise accessibility in hyperspaces, Fund. Math. 110 (1980), 117-130. MR 600585 (82b:54049)
  • [4] G. W. Henderson, Proof that every compact decomposable continuum which is topologically equivalent to each of its non-degenerate subcontinua is an arc, Ann. of Math. (2) 72 (1960), 421-428. MR 0119183 (22:9949)
  • [5] W. Hurewicz and H. Wallman, Dimension theory, Princeton Univ. Press., Princeton, N. J., 1941. MR 0006493 (3:312b)
  • [6] B. Knaster, Un continu irreductible à décomposition continue en tranches, Fund. Math. 25 (1935), 568-577.
  • [7] J. Krasinkiewicz, On two theorems of Dyer (to appear). MR 857853 (88d:54042)
  • [8] K. Kuratowski, Topology, Vol. 2, Academic Press, New York, 1968. MR 0259836 (41:4468)
  • [9] W. S. Mahavier, Upper semi-continuous decompositions of irreducible continua, Fund. Math. 60 (1967), 53-57. MR 0208579 (34:8388)
  • [10] S. Mazurkiewicz, Sur l'existence des continues indecomposables, Fund. Math. 26 (1935), 327-328.
  • [11] S. B. Nadler, Hyperspaces of sets, Dekker, New York, 1968.
  • [12] -, Arcwise accessibility in hyperspaces, Dissertationes Math. 138 (1976), 1-33. MR 0425923 (54:13873)
  • [13] J. W. Rogers, Jr., On mapping indecomposable continua onto certain chainable indecomposable continua, Proc. Amer. Math. Soc. 25 (1970), 449-456. MR 0256361 (41:1017)
  • [14] E. S. Thomas, Jr., Monotone decompositions of irreducible continua, Rozprawy Mat. 50 (1966). MR 0196721 (33:4907)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54F20, 54F50

Retrieve articles in all journals with MSC: 54F20, 54F50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0701520-7
Keywords: Hereditarily decomposable continua, monotone decomposition into tranches
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society