Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On some cheap control problems for diffusion processes


Authors: José-Luis Menaldi and Maurice Robin
Journal: Trans. Amer. Math. Soc. 278 (1983), 771-802
MSC: Primary 93E20; Secondary 60J60
MathSciNet review: 701523
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider several cases of control problems for diffusion processes when the payoff functional does not depend explicitly on the control. We prove the continuity of the optimal cost function and give a characterization of this cost with a quasi-variational inequality interpreting the problem as limit of an impulse control problem when the cost of impulse tends to zero. Moreover, we show the existence of an optimal control for some particular situations.


References [Enhancements On Off] (What's this?)

  • [1] Emmanuel Nicholas Barron and Robert Jensen, Optimal control problems with no turning back, J. Differential Equations 36 (1980), no. 2, 223–248. MR 574337, 10.1016/0022-0396(80)90064-9
  • [2] John Bather and Herman Chernoff, Sequential decisions in the control of a spaceship, Proc. Fifth Berkeley Sympos. Mathematical Statistics and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 181–207. MR 0224218
  • [3] V. E. Beneš, L. A. Shepp, and H. S. Witsenhausen, Some solvable stochastic control problems, Stochastics 4 (1980/81), no. 1, 39–83. MR 587428, 10.1080/17442508008833156
  • [4] Alain Bensoussan, Inéquations quasi-variationnelles avec données non bornées et interprétation probabiliste, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 16, 751–754 (French, with English summary). MR 619745
  • [5] A. Bensoussan and J.-L. Lions, Applications des inéquations variationnelles en contrôle stochastique, Dunod, Paris, 1978 (French). Méthodes Mathématiques de l’Informatique, No. 6. MR 0513618
  • [6] -, Contrôle impulsionnel et inéquations quasi-variationnelles, Dunod, Paris, 1982.
  • [7] M. Iu. Borodovskiĭ, A. S. Bratus′, and F. L. Chernous′ko, Optimal impulse correction under random perturbations, Prikl. Mat. Meh. 39 (1975), no. 5, 797–805 (Russian); English transl., J. Appl. Math. Mech. 39 (1975), no. 5, 767–775 (1976). MR 0439369
  • [8] A. S. Bratus′, Solution of certain optimal correction problems with error of execution of the control action, Prikl. Mat. Meh. 38 (1974), 433–440 (Russian); English transl., J. Appl. Math. Mech. 38 (1974), 402–409 (1975). MR 0368897
  • [9] M. Chaleyat-Maurel, N. El Karoui, and B. Marchal, Réflexion discontinue et systèmes stochastiques, Ann. Probab. 8 (1980), no. 6, 1049–1067 (French, with English summary). MR 602379
  • [10] F. L. Chernous’ko, Optimum correction under active disturbances, J. Appl. Math. Mech. 32 (1968), 196–200. MR 0238146
  • [11] F. L. Chernous′ko, Self-similar solutions of the Bellman equation for optimal correction of random disturbances, J. Appl. Math. Mech. 35 (1971), 291–300. MR 0299390
  • [12] V. K. Gorbunov, Minimax impulsive correction of perturbations of a linear damped oscillator, Prikl. Mat. Meh. 40 (1976), 252-259 = J. Appl. Math. Mech. 40 (1976), 230-237.
  • [13] Ioannis Karatzas, The monotone follower problem in stochastic decision theory, Appl. Math. Optim. 7 (1981), no. 2, 175–189. MR 616508, 10.1007/BF01442115
  • [14] -, A class of singular stochastic control problems, Adv. Appl. Probab. (to appear).
  • [15] J.-P. Lepeltier and B. Marchal, Problème des martingales et équations différentielles stochastiques associées à un opérateur intégro-différentiel, Ann. Inst. H. Poincaré Sect. B (N.S.) 12 (1976), no. 1, 43–103 (French). MR 0413288
  • [16] J.-L. Menaldi, On the optimal stopping time problem for degenerate diffusions, SIAM J. Control Optim. 18 (1980), no. 6, 697–721. MR 592928, 10.1137/0318052
  • [17] J.-L. Menaldi, On the optimal impulse control problem for degenerate diffusions, SIAM J. Control Optim. 18 (1980), no. 6, 722–739. MR 592929, 10.1137/0318053
  • [18] J. L. Menaldi, J. P. Quadrat and E. Rofman, On the role of the impulse fixed cost in stochastic optimal control: An application to the management of energy production, Proc. Tenth IFIP Conf. System Modelling and Optimization (New York City, 1981), Lecture Notes in Control and Information Sciences, vol. 38, Springer-Verlag, New York, 1982, pp. 671-679.
  • [19] José Luiz Menaldi and Maurice Robin, Sur certaines classes de problèmes singuliers de contrôle stochastique, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 16, 541–544 (French, with English summary). MR 679939
  • [20] José-Luis Menaldi and Edmundo Rofman, On stochastic control problems with impulse cost vanishing, Semi-infinite programming and applications (Austin, Tex., 1981) Lecture Notes in Econom. and Math. Systems, vol. 215, Springer, Berlin, 1983, pp. 281–294. MR 709283, 10.1007/978-3-642-46477-5_19
  • [21] Makiko Nisio, On a non-linear semi-group attached to stochastic optimal control, Publ. Res. Inst. Math. Sci. 12 (1976/77), no. 2, 513–537. MR 0451420
  • [22] M. Robin, Contrôle impulsionnel des processus de Markov, Thèse d'Etat, INRIA, Le Chesnay, France, 1978.
  • [23] R. G. Vickson, Capacity expansion under stochastic demand and costly importation, W. Pn $ ^{\text{o}}$ 782, University of British Columbia, Vancouver, 1981.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 93E20, 60J60

Retrieve articles in all journals with MSC: 93E20, 60J60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0701523-2
Keywords: Optimal impulse control, diffusion processes, quasi-variational inequalities, second order elliptic operators
Article copyright: © Copyright 1983 American Mathematical Society