An application of asymptotic techniques to certain problems of spectral and scattering theory of Stark-like Hamiltonians

Author:
Matania Ben-Artzi

Journal:
Trans. Amer. Math. Soc. **278** (1983), 817-839

MSC:
Primary 35P25; Secondary 81C10

MathSciNet review:
701525

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be selfadjoint in . Here are real functions, depends only on the first coordinate. Existence of the wave-operators - is proved, using the stationary phase method. For this, an asymptotic technique is applied to the study of in . Its absolute continuity is proved as well as a suitable eigenfunction expansion. is a "Stark-like" potential. In particular, the cases , are included. may be taken as the sum of an -function and a function satisfying growth conditions in the direction. is included.

**[1]**J. E. Avron and I. W. Herbst,*Spectral and scattering theory of Schrödinger operators related to the Stark effect*, Comm. Math. Phys.**52**(1977), no. 3, 239–254. MR**0468862****[2]**Matania Ben-Artzi,*On the absolute continuity of Schrödinger operators with spherically symmetric, long-range potentials. I, II*, J. Differential Equations**38**(1980), no. 1, 41–50, 51–60. MR**592867**, 10.1016/0022-0396(80)90023-6**[3]**-,*Unitary equivalence and scattering theory for Stark-like Hamiltonians*(preprint).**[4]**Matania Ben-Artzi and Allen Devinatz,*Spectral and scattering theory for the adiabatic oscillator and related potentials*, J. Math. Phys.**20**(1979), no. 4, 594–607. MR**529723**, 10.1063/1.524128**[5]**Allen Devinatz,*The existence of wave operators for oscillating potentials*, J. Math. Phys.**21**(1980), no. 9, 2406–2411. MR**585593**, 10.1063/1.524678**[6]**John D. Dollard and Charles N. Friedman,*Existence of the Møller wave operators for 𝑉(𝑟)=(𝜆𝑠𝑖𝑛(𝜇𝑟^{𝛼})/𝑟^{𝛽})*, Ann. Physics**111**(1978), no. 1, 251–266. MR**0489510****[7]**N. Dunford and J. T. Schwartz,*Linear operators*. II, Wiley Interscience, New York, 1967.**[8]**T. A. Green and O. E. Lanford III.,*Rigorous derivation of the phase shift formula for the Hilbert space scattering operator of a single particle*, J. Mathematical Phys.**1**(1960), 139–148. MR**0128356****[9]**Ira W. Herbst,*Unitary equivalence of stark Hamiltonians*, Math. Z.**155**(1977), no. 1, 55–70. MR**0449318****[10]**L. Hörmander,*The existence of wave-operators in scattering theory*Math. Z.**146**(1976), 69-91.**[11]**Tosio Kato,*Perturbation theory for linear operators*, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR**0203473****[12]**M. Reed and B. Simon,*Methods of modern mathematical physics*. Vol. I:*Functional analysis*, Academic Press, New York and London, 1972.**[13]**Michael Reed and Barry Simon,*Methods of modern mathematical physics. III*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. Scattering theory. MR**529429****[14]**P. A. Rejto and Kalyan Sinha,*Absolute continuity for a 1-dimensional model of the Stark-Hamiltonian*, Helv. Phys. Acta**49**(1976), no. 3, 389–413. MR**0416356****[15]**Yasutaka Sibuya,*Global theory of a second order linear ordinary differential equation with a polynomial coefficient*, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. North-Holland Mathematics Studies, Vol. 18. MR**0486867****[16]**Barry Simon,*Phase space analysis of simple scattering systems: extensions of some work of Enss*, Duke Math. J.**46**(1979), no. 1, 119–168. MR**523604****[17]**Krešimir Veselić and Joachim Weidmann,*Potential scattering in a homogeneous electrostatic field*, Math. Z.**156**(1977), no. 1, 93–104. MR**0510118****[18]**Kenji Yajima,*Spectral and scattering theory for Schrödinger operators with Stark effect*, J. Fac. Sci. Univ. Tokyo Sect. IA Math.**26**(1979), no. 3, 377–390. MR**560003**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35P25,
81C10

Retrieve articles in all journals with MSC: 35P25, 81C10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1983-0701525-6

Article copyright:
© Copyright 1983
American Mathematical Society