Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Operators of $ P$-variation and the evolution representation problem


Author: M. A. Freedman
Journal: Trans. Amer. Math. Soc. 279 (1983), 95-112
MSC: Primary 47D05
MathSciNet review: 704604
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In contrast to a continuous linear semigroup, a continuous linear evolution $ U( \cdot )$ may be nondifferentiable or of unbounded variation. In order to study these evolutions we introduce a class of operator-valued functions $ A( \cdot )$ which satisfy a generalized bounded variation condition and represent $ U$ as the product integral $ U = \prod [I + dA]$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47D05

Retrieve articles in all journals with MSC: 47D05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1983-0704604-2
PII: S 0002-9947(1983)0704604-2
Keywords: $ p$-variation, evolution, product integral, Stieltjes integral
Article copyright: © Copyright 1983 American Mathematical Society