Spherical harmonics and integral geometry on projective spaces

Author:
Eric L. Grinberg

Journal:
Trans. Amer. Math. Soc. **279** (1983), 187-203

MSC:
Primary 53C65; Secondary 43A90, 58G15

DOI:
https://doi.org/10.1090/S0002-9947-1983-0704609-1

MathSciNet review:
704609

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Radon transform on associates to a point function the hyperplane function by integration over the hyperplane . If is the dual transform, we can invert by a polynomial in the Laplace-Beltrami operator, and verify the formula of Helgason [**7**] with very simple computations.

We view the Radon transform as a -invariant map between representations of the group of isometries on function spaces attached to . Pulling back to a sphere via a suitable Hopf fibration and using the theory of spherical harmonics, we can decompose these representations into irreducibles. The scalar by which acts on each irreducible is given by a simple integral. Thus we obtain an explicit formula for . The action of is immediately related to the spectrum of . This shows that can be inverted by a polynomial in the Laplace-Beltrami operator. Similar procedures give corresponding results for the other compact -point homogeneous spaces: , , , as well as spheres.

**[1]**M. Berger et al.,*Le spectre d'une variété Riemannienne*. Lecture Notes in Math., vol. 194, Springer-Verlag, Berlin and New York, 1971.**[2]**J. Dieudonné,*Special functions and linear representations of Lie groups*. CBMS Regional Conf. Ser. in Math., no. 42, Amer. Math. Soc., Providence, R.I., 1980. MR**557540 (81b:22002)****[3]**I. M. Gelfand, M. I. Graev and Z. Ya. Shapiro,*Differential forms and integral geometry*. Functional Anal. Appl.**3**(1969), 24-40. MR**0244919 (39:6232)****[4]**I. M. Gelfand. M. I. Graev and N. Ya. Vilenkin.*Generalized functions*, vol. 5, Academic Press, New York, 1966. MR**0435835 (55:8786e)****[5]**V. Guillemin,*Radon transform on Zoll surfaces*. Adv. in Math.**22**(1976), 85-119. MR**0426063 (54:14009)****[6]**V. Guillcmin and D. Schaeffer,*Fourier integral operators from the Radon transform point of view*, Proc. Sympos. Pure Math., vol. 27, Amer. Math. Soc., Providence, R.I., 1975, pp. 297-300. MR**0380520 (52:1420)****[7]**S. Helgason,*The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds*. Acta Math.**113**(1965). MR**0172311 (30:2530)****[8]**-,*The Radon transform*, Progress in Math., Birkhäuser, Basel, 1980.**[9]**S. Kobayashi and K. Nomizu,*Foundations of differential geometry*, vols. 1,2, Wiley (Interscience), New York. 1969.**[10]**I. R. Portcous,*Topological geometry*, Cambridge Univ. Press, New York, 1981. MR**606198 (82c:51018)****[11]**R. T. Smith,*The spherical representation of groups transitive on*, Indiana Univ. Math. J.**24**(1974), 307-325. MR**0364557 (51:811)****[12]**H. Wcyl,*The classical groups, their invariants and representations*, Princeton Univ. Press, Princeton, N.J., 1939. MR**1488158 (98k:01049)****[13]**G. W. Whitehead,*Elements of homotopy theory*, Springer-Verlag, Berlin and New York, 1978. MR**516508 (80b:55001)****[14]**R. S. Strichartz,*estimates for Radon transforms...*, Duke Math. J.**48**(1981), 699-727. MR**782573 (86k:43008)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
53C65,
43A90,
58G15

Retrieve articles in all journals with MSC: 53C65, 43A90, 58G15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1983-0704609-1

Keywords:
Integral geometry,
Radon transform,
spherical harmonics,
projective spaces

Article copyright:
© Copyright 1983
American Mathematical Society