NAKAYAMA ALGEBRAS AND GRADED TREES

BY

B. ROHNES AND S. O. SMALØ

Abstract. Let k be an algebraically closed field. We show that if T is a finite tree, then there is a grading g on T such that (T, g) is a representation finite graded tree, and such that the corresponding simply connected k-algebra is a Nakayama algebra (i.e. generalized uniserial algebra).

Introduction. Let k be an algebraically closed field. A simply connected algebra Λ over k is an algebra which is representation-finite, connected, basic, finite-dimensional and has a simply connected Auslander-Reiten quiver Γ_Λ. In order to study the simply connected algebras, K. Bongartz and P. Gabriel introduced the notion of graded trees [2]. If T is a finite tree, let T_0 denote the set of vertices of T. A grading of the tree T is a function $g: T_0 \rightarrow \mathbb{N}$ (\mathbb{N} is the nonnegative integers), satisfying the following conditions:

(a) $g(x) - g(y) \in 1 + 2\mathbb{Z}$, whenever x and y are neighbours in T (\mathbb{Z} the integers).

(b) $g^{-1}(0) \neq \emptyset$.

A graded tree is a pair (T, g) formed by a tree T and a grading g of T.

K. Bongartz and P. Gabriel show that there is a bijection between the isomorphism classes of representation-finite graded trees and the isomorphism classes of simply connected algebras. For the benefit of the reader we give a summary of their results in §1. They also show in [2] that every tree T admits only a finite number of representation-finite gradings. In this paper we show that for every tree T it is possible to find a grading g such that (T, g) is representation-finite. This answers a question raised by P. Gabriel. In fact, what we show is that given a tree T it is possible to find a grading g such that the associated simply connected algebra is a Nakayama algebra. Conversely, given a noncyclic Kupisch series for a Nakayama k-algebra Λ, one may associate a graded tree (T, g) such that the simply connected k-algebra obtained from (T, g) is Λ.

1. Simply connected algebras and graded trees. Let (T, g) be a graded tree. To this graded tree we associate a translation quiver Q_T in the following way. The vertices of Q_T are the points $(n, t) \in \mathbb{N} \times T_0$ such that $n - g(t) \in 2\mathbb{N}$, two such vertices (m, s) and (n, t) are joined by an arrow $(m, s) \rightarrow (n, t)$ if s, t are neighbours in T and $n = m + 1$. The projective vertices are the points $(g(t), t)$, the translate of a nonprojective vertex is defined by $\tau(n, t) = (n - 2, t)$.

Received by the editors September 13, 1982.

1980 Mathematics Subject Classification. Primary 16A64, 16A46.

Key words and phrases. Simply connected algebra, module, graded tree, Kupisch series.

©1983 American Mathematical Society

0002-9947/82/0000-0938/$03.00
For each graded tree $T = (T, g)$ there is a unique map $d: (Q_T)_0 \to N^{T_0}$ satisfying the following conditions:

(a) $d(g(t), t) = \delta_t + \sum_s d(g(t) - 1, s)$, where s ranges over the neighbours s of t such that $g(s) < g(t)$ and $d(g(t) - 1, s) > 0$ (where a function is > 0 if all its values are ≥ 0 and at least one of them if > 0), and the Kronecker function δ_t takes the value 1 at t and 0 otherwise.

(b) $d(n, t) = \sum_s d(n - 1, s) - d(n - 2, t)$, whenever (n, t) is a nonprojective vertex of Q_T for which the functions $d(n - 2, t)$ and $\sum_s d(n - 1, s) - d(n - 2, t)$ are both > 0, when s ranges over the neighbours of t in T such that $g(s) < n$.

(c) For any other vertex (n, t) of Q_T we have $d(n, t) = 0$.

Using these conditions, $d(n, t)$ can be computed by induction on n, starting with $n = g(t)$. d is called the dimension map of Q_T. We denote by R_T the full subtranslation-quiver of Q_T formed by the vertices (n, t) such that $d(n, t) > 0$. The grading g is called admissible if R_T is a connected subquiver of Q_T, and T is then called an admissible graded tree. The grading is called representation-finite if it is admissible and R_T is finite. T is then called a representation-finite graded tree.

Remark. We are using a definition of d different from the one given in [2, p. 356], since it was through our definition we saw the main result of this paper. Also with our definition the projective vertices in R_T coincide with those in Q_T regardless of the grading g. It is easy to see that the two definitions are the same when R_T is connected.

Let T be an admissible graded tree. Let A^T be the finite-dimensional algebra $A^T = \prod_{p,q} k(R_T)(q, p)$, where $k(R_T)$ is the mesh category of R_T, and p, q range over all projective vertices of R_T. Then each vertex x of R_T is associated with an A^T-module $M(x) = \prod_p k(R_T)(p, x)$, where p ranges over all projective vertices of R_T, and it is shown in [2] that for every vertex (n, t) of R_T, the A^T-module $M(n, t)$ is indecomposable and its dimension vector is $d(n, t)$, especially, $M(g(t), t)$ are the indecomposable projective modules, and if $M(n, t)$ is not projective, $DTr(M(n, t)) = M(n - 2, t) = M(t(n, t))$. In fact, if (T, g) is representation-finite, then there is a translation-quiver isomorphism of the Auslander-Reiten quiver Γ_A onto R_T.

If Γ is a locally finite translation-quiver, and x is a vertex of Γ, the set of all $n \in Z$ such that $\tau^n x$ is defined, is an interval $[\tau^n x, n \in \tau^n x]$ of Z. Then the set $x^\tau = \{\tau^n x, n \in \tau^n x\}$ is called the τ-orbit of x. The vertex x is stable if $[\tau^n x] = Z$, it is periodic if it is stable and has a finite τ-orbit. The τ-orbits of a connected component E of the stable part Γ_s of Γ are either all finite or all infinite. In the first case we call E a periodic component of Γ.

If $x \xrightarrow{\sigma} y$ is an arrow of Γ, where y is not projective, there is a unique arrow $\tau y \rightarrow x$, which we denote σx. The τ-orbit of σ, denoted τ^σ, is the set of all arrows of Γ of the form $\sigma^\alpha x$.

The graph G_{Γ} associated with Γ has as vertices the nonperiodic τ-orbits and the periodic components of Γ. To each periodic component, considered as a vertex of G_{Γ}, we associate a loop of G_{Γ}. Let a^σ be a σ-orbit connecting x^τ and y^τ. If both x and y are nonperiodic, we associate with a^σ an edge connecting the vertices x^τ and y^τ. If y is not periodic and x belongs to a periodic component E we associate with a^σ an edge of G_{Γ} connecting E and y^τ.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Now, if A is a simply connected algebra, and Γ_A is the Auslander-Reiten quiver of A, then the graph G_A associated with Γ_A is a tree [2, Theorem 4.2]. Since Γ_A is simply connected and finite, there is a unique quiver morphism $K_A: \Gamma_A \to \mathbb{Z}A_2$ such that $0 = \min K(x)$, the minimum taken over all vertices x of Γ_A. Here $\mathbb{Z}A_2$ is the following translation quiver where \rightarrow indicates the translation. Since G_A is a tree, each τ-orbit t of Γ_A contains exactly one projective vertex p_t. We set $g_A(t) = K_A(p_t) \in \mathbb{N}$. The function g_A is then a grading of G_A, and (G_A, g_A) is a graded tree. The maps $(T, g) \to A_T$ and $A \to (G_A, g_A)$ are inverse maps and therefore there is a bijection between the isomorphism classes of representation-finite graded trees and the isomorphism classes of simply connected algebras [2, 6.5].

![Diagram of trees and algebras]

2. The relation between Kupisch series and trees. In this section we examine the relation between the Nakayama algebras with noncyclic Kupisch series and trees. We show that given a tree T, it is possible to associate a Nakayama algebra Λ to this tree such that the graph of Λ is isomorphic to T. From this follows the main result of this paper: To every tree T it is possible to find a grading g such that (T, g) is representation-finite. The Nakayama algebra Λ is not uniquely given by the construction we use.

But first we show how to construct a tree T_Λ from a Nakayama algebra Λ with noncyclic Kupisch series. The construction determines T_Λ uniquely up to isomorphism, and later we will see that T_Λ is in fact the graph G_A associated with Γ_A. Therefore this gives us an easy way to construct G_A if Λ is a Nakayama algebra.

We recall that the Kupisch series for an indecomposable Nakayama algebra Λ is an ordered complete set of representatives P_1, \ldots, P_n of the isomorphism classes of indecomposable projective Λ-modules, satisfying the following conditions:

(i) $P_i/rP_i \cong rP_{i+1}/r^2P_{i+1}$, or equivalently:

$$P_{i+1}/rP_{i+1} = TrD(P_i/rP_i).$$

(ii) $L(P_i) \geq 2$ for all i such that $2 \leq i \leq n$.

(iii) $L(P_{i+1}) \leq L(P_i) + 1$ for $i = 1, \ldots, n$, and $L(P_1) \leq L(P_n) + 1$.

$L(M)$ = the length of the Λ-module M.

Any finite sequence of integers c_1, \ldots, c_n satisfying (ii) and (iii) above when we put $c_i = L(P_i)$, is called an admissible sequence. Given an arbitrary admissible sequence, an algebra can be constructed such that its Kupisch series corresponds to this sequence. The Kupisch series is noncyclic if $L(P_1) = 1$. For details, see [4].

Let Λ be an indecomposable Nakayama algebra with a noncyclic Kupisch series. Let T_Λ be the following tree: The vertices of T_Λ are the representatives of the isomorphism classes of indecomposable projective Λ-modules. For each i, let t_i be the vertex corresponding to the projective P_i. If $i, j \in \{1, \ldots, n\}$, with $i \leq j$, there is an edge connecting t_i and t_j if i is the greatest integer less than j such that $L(P_i) = L(P_j) + 1$. T_Λ is connected, since for every $j \in \{2, \ldots, n\}$ it follows from
(iii) above that there always exists such an i, and it is not difficult to see that T_Λ really is a tree when constructed as above.

We define a walk in a tree T to be a sequence of vertices $S_1 \cdots S_n$, connected by edges $\alpha_1 \cdots \alpha_{n-1}$ in such a way that for each $i \in \{1, \ldots, n - 1\}$, S_i and S_{i+1} are connected by the edge α_i of T.

If u is a walk: $S_1 \overrightarrow{\alpha_1} S_2 \overrightarrow{\alpha_2} \cdots \overrightarrow{\alpha_{k-1}} S_k$ in a tree T, we define the length of u, $l(u) = k$. If S_i and S_j are two vertices of T, the shortest walk from S_i to S_j is the walk that does not pass through any vertex twice. It follows from the construction above that for any vertex t_i in T_Λ, $L(P_i)$ is equal to the length of the shortest walk in T_Λ from t_i to t_1.

Example. Given the admissible sequence $\{1, 2, 3, 3, 4, 3\}$ the corresponding tree T_Λ is:

![Diagram of tree]

Conversely, starting with a tree T, to this tree we can associate a noncyclic Kupisch-series for an indecomposable Nakayama algebra: Fix a point t_1 in the tree T and a walk V around the tree from t_1 to t_1 which passes through every edge in the tree exactly twice.

Example. If T is the tree, then $V: t_1 \leftarrow B \rightarrow A \rightarrow B \rightarrow C \leftarrow D \rightarrow C \rightarrow E \rightarrow C \rightarrow B \rightarrow t_1 \leftarrow F \rightarrow t_1 \leftarrow G \rightarrow H \rightarrow G \rightarrow t_1 \leftarrow I \rightarrow t_1$ is such a walk.

![Diagram of walk]

The order in which V passes through each vertex for the first time defines an ordering of the vertices of T, such that t_i is the ith new vertex which occurs in V. In
the example above \(t_2 = B, t_3 = A, t_4 = C, t_5 = D, t_6 = E, t_7 = F, t_8 = G, t_9 = H, t_{10} = I \).

Suppose \(T_0 = \{t_1, \ldots, t_n\} \). Then for each \(i \in \{1, \ldots, n\} \), let \(C_i = l(U_i) \), where \(U_i \) is the shortest walk in \(T \) from \(t_i \) to \(t_i \). It is clear that \(C_1 = 1 \), and that \(C_i \geq 2 \) for \(i \geq 2 \). Further, if \(t_{i+1} \) is a neighbour of \(t_i \), then \(C_{i+1} = C_i + 1 \), because it is clear that there is only one neighbour \(t_k \) of \(t_i \) with \(l(U_k) < l(U_i) \), and it is the only neighbour with \(k < i \). If \(t_{i+1} \) is not a neighbour of \(t_i \), then \(t_{i+1} \) is a neighbour of a vertex \(t_j \) with \(l(U_j) < l(U_i) \). So in that case \(C_{i+1} < C_i + 1 \). Therefore we have that \(\{C_1, \ldots, C_n\} \) is an admissible sequence which corresponds to the noncyclic Kupisch series of an indecomposable Nakayama algebra.

We now claim that every indecomposable Nakayama algebra \(\Lambda \) with a noncyclic Kupisch series is simply connected. The ordinary quiver \(Q_\Lambda \) of an indecomposable Nakayama algebra \(\Lambda \) with a noncyclic Kupisch series is a tree of form \(\rightarrow \cdots \rightarrow \), therefore the fundamental group \(\pi(Q_\Lambda, x) = \{1\} \), and from [3,2.2] we know that there is a surjective group homomorphism \(\phi_\Lambda: \pi(Q_\Lambda, x) \rightarrow \pi(G_\Lambda, x) \). Therefore \(\pi(G_\Lambda, x) \) is trivial, and \(\Lambda \) is simply connected. See also [2,6.1].

Therefore, to every tree \(T \) one may associate a simply connected algebra \(\Lambda \), namely, the indecomposable Nakayama algebra constructed above. Remark that the Kupisch series of \(\Lambda \) depends on the choice of the basis point \(t_i \) and the walk \(V \), therefore given a tree \(T \), there is usually more than one choice of a corresponding Nakayama algebra \(\Lambda \). For our purposes, it is enough to look at one of these. Since \(\Lambda \) is simply connected, we know that the graph \(G_\Lambda \) is a tree [2, Theorem 4.2]. Because of the connection between simply connected algebras and graded trees, to show that the tree \(T \) has a representation-finite grading, it is enough to show that \(G_\Lambda \) is isomorphic to the tree \(T \). (Remark that we consider a tree to be completely determined by the vertices and the edges connecting them, such that for instance, are considered to be isomorphic.)

\[
T_1 = \quad T_2 = \quad
\]

The number of \(\tau \)-orbits is equal to the number of projective \(\Lambda \)-modules, so the number of vertices of \(G_\Lambda \) is equal to the number of vertices of \(T \). Now we define a map \(\theta: T_0 \rightarrow (G_\Lambda)_0 \) such that \(\theta(T_i) \) is the vertex representing the \(\tau \)-orbit of the projective \(\Lambda \)-module \(P_i \), with \(L(P_i) = C_i \), where \(C_i \) is as defined above. Then \(\theta \) is a bijection. Denote \(\theta(t_i) \) by \(S_i \). Since \(G_\Lambda \) and \(T \) are trees with the same number of vertices, they also have the same number of edges, and to prove that \(G_\Lambda \) is isomorphic to \(T \), it is enough to show that if there is an edge connecting the vertices \(t_i \) and \(t_j \) in \(T \), there is an edge connecting the vertices \(S_i \) and \(S_j \) in \(G_\Lambda \).
Let us recall some useful facts about Nakayama algebras. If Λ is a Nakayama algebra, then every indecomposable Λ-module is of the form P_i/r^kP_i, where $k \geq 0$ and P_i is an indecomposable projective Λ-module. If P_i/r^kP_i is an indecomposable nonprojective Λ-module, then it is shown in [1] that the almost split sequence with P_i/r^kP_i as right-hand term has the form

$$0 \to P_{i-1}/r^kP_{i-1} \to P_{i-1}/r^{k-1}P_{i-1} \to P_i/r^{k+1}P_i \to P_i/r^kP_i \to 0.$$

It follows from this that τ-orbits preserve the length of modules, and all simples belong to the same τ-orbit. We also recall that given the Kupisch series for a Nakayama algebra Λ, we always have an epimorphism $P_i \to rP_{i+1}$. If $L(P_{i+1}) = L(P_i) + 1$, this epimorphism is also an isomorphism.

Now, suppose that t_i or t_j is t_1, say $t_i = t_1$. $L(P_i) = 1$, so P_i is the unique simple projective. Since t_j is a neighbour of t_i, we see from the construction above, that $L(P_j) = 2$. But that means rP_j is simple, and then either $rP_j \cong P_1$, or rP_j is in the τ-orbit determined by P_1, so S_j is a neighbour of S_1 in G_Λ. Suppose that neither t_i nor t_j are t_1, but that there is an edge $t_i - t_j$. Let $i < j$. Then $L(P_i) = L(P_j) + 1$ by the construction above. Therefore $L(rP_j) = L(P_j)$. Since Λ is Nakayama, rP_j belongs to the τ-orbit of a projective module with the same length as P_i. We remember that the ordering of the projectives was defined by help of the walk V in T, and since T is a tree, and every edge in T appears in V exactly twice, we have $L(P_k) > L(P_i)$ for every edge k such that $i < k < j$. If P_m is an indecomposable Λ-module, the length of the τ-orbit determined by P_m, $l(P_m^\tau)$, is the number of nonisomorphic objects in the τ-orbit. For a Nakayama algebra Λ, the following formula is easily obtained, using the form of almost split sequences indicated above: $l(P_m^\tau) = h - m + 1$, where h is maximal with the property that $L(P_p) - L(P_m) > 0$ for all p such that $m < p < h$. Further if $L(P_m) = q$, then the modules in this τ-orbit are the modules of the form P_p/r^qP_p, where $m \leq p < h$. In our case, if we let $L(P_i) = q$, it follows that P_{j-1}/r^qP_{j-1} is in the τ-orbit of P_j. But since we have an epimorphism $P_{j-1} \to rP_j$, and $L(rP_j) = L(P_j) = q$, we have $rP_j \cong P_{j-1}/r^qP_{j-1}$. Therefore rP_j is in the τ-orbit of P_j, and we have an edge $S_i - S_j$ in G_Λ.

We have now proved the main result of this paper:

Theorem. If T is a finite tree, then there is a grading g such that (T, g) is representation-finite, and such that the corresponding simply connected algebra Λ is a Nakayama algebra.

Example. Let T be the tree:

```
  8
 / \
7   6
/   |
5   4
/   |
3   2
/   |
1
```

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Let V be the walk: $t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow t_4 \rightarrow t_5 \rightarrow t_6 \rightarrow t_7 \rightarrow t_8 \rightarrow t_4 \rightarrow t_1$, which is a walk around the tree, passing through every edge in the tree exactly twice. To the tree T and the walk V we may associate the Kupisch series $(P_1, P_2, P_3, P_4, P_5, P_6, P_7, P_8)$ corresponding to the admissible sequence $(1, 2, 2, 2, 3, 4, 3, 3)$.

The AR-quiver Γ_A of the Nakayama algebra Λ is the following:

![Diagram of Γ_A]

We see that P_2, P_5, P_6, P_7 and P_8 all are projective injectives. All arrows pointing upward correspond to irreducible monomorphisms, all arrows pointing downward correspond to irreducible epimorphisms. If there is an irreducible monomorphism $X \rightarrow Y$, $LY = LX + 1$, and if there is an irreducible epimorphism $X \rightarrow Y$, $LX = LY + 1$. If $X \in \text{ind} \, \Lambda$, $\text{Soc} \, X$ is the unique simple module S such that there is a chain of irreducible monomorphisms $S \rightarrow \cdots \rightarrow X$, $X/r \, X$ is the simple module T such that there is a chain of irreducible epimorphisms $X \rightarrow \cdots \rightarrow T$. $L(X)$, the length of X, is equal to the shortest walk in Γ_A from $\text{Soc} \, X$ to X.

If we start with a tree T, choose a point t, and a walk V around the tree, and construct the corresponding Nakayama algebra Λ in the way described above, it is possible to find the number of nonisomorphic indecomposable projective injective Λ-modules just by looking at the tree T.

Proposition. The number of projective injective Λ-modules is equal to the number of vertices in T, different from t_1, which have only one neighbour.

Proof. P_i is projective injective if and only if $L(P_{i+1}) < L(P_i) + 1$. If $t_i \neq t_1$ is a point in T having only one neighbour t_j, then every walk in T from t_1 to t_i must pass through t_j, therefore $j < i$, and t_{i+1} is not a neighbour of t_i. But then t_{i+1} is a neighbour of a point t_k which does not lie farther away from t_i than t_j, and $L(P_{i+1}) \leq L(P_j) + 1 = L(P_i) < L(P_i) + 1$, which means that P_i is a projective injective module. On the other hand, if P_i is a projective injective module, then $L(P_{i+1}) < L(P_i) + 1$, and t_{i+1} is not a neighbour of t_i. But then t_i can have only one neighbour (recall that the walk V that defines the ordering passes through every edge exactly twice). The relation between V and Γ_A can be described in the following manner.

Proposition. Let θ be a chain of irreducible maps in $k(\Gamma_A)$ given by

$$\theta: P_1 = M(0, t_1) \rightarrow P_2 \rightarrow \cdots \rightarrow P_i \rightarrow \cdots \rightarrow rP_{i+1} \rightarrow \cdots \rightarrow P_n \rightarrow \cdots \rightarrow M(2(n-1), t_1)$$
which passes through all the projectives in the order given by the Kupisch series, and
which satisfies the condition that if P_n is the last projective in the ordering, then
$P_n \rightarrow \cdots \rightarrow M(2(n - 1), t_1)$ is the unique path from the projective injective module P_n
to the simple injective Λ-module $M(2(n - 1), t_1)$. Then V is the walk in T constructed
by taking for each module in θ the corresponding point in T, and passing through the
points in the order defined by θ.

Proof. This can be proven in the same way as the main theorem above.

References

1. M. Auslander and I. Reiten, Representation theory of artin algebras. IV: Invariants given by almost
331–378.
Algebra, Puebla, 1980.
Math. 201 (1959), 100–112.

Department of Mathematics and Statistics, University of Trondheim, N1HT, 7055 Dragvoll,
Norway (Current address of S. O. Smalø)

Current address (B. Rohnes): Department of Mathematics, Brandeis University, Waltham, Massachu-
setts 02154

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use